MHH-Forscher entschlüsseln Mechanismus der Gefäßverzweigung

Dreidimensionale Darstellung der entstehenden Verästelung eines Gefäßes, gesteuert durch Delta-like 1<br>

Blutgefäße bilden vielfach verzweigte Gefäßbäume, die die Versorgung von Organen mit Nährstoffen und Sauerstoff sicherstellen. Während der Embryonalentwicklung wird das Verzweigungsmuster festgelegt. Danach bilden sich neue Gefäßabzweigungen nur noch selten. Viele Patienten sterben auch heute noch an den Folgen mangelnder Durchblutung lebenswichtiger Organe.

Ein Forscherteam aus dem Exzellenzcluster REBIRTH (Von regenerativer Biologie zu rekonstruktiver Medizin) und der Klink für Kardiologie und Angiologie an der Medizinischen Hochschule Hannover (MHH) unter der Leitung von Dr. Florian P. Limbourg entdeckte jetzt einen Mechanismus, wie Blutgefäße Gefäßabzweigungen ausbilden. Ihre Ergebnisse veröffentlichte das Team im Fachmagazin „Circulation Research“.

„Wir wollen nun in einer vom Bundesministerium für Bildung und Forschung geförderten Studie untersuchen, ob wir durch gezieltes Anschalten dieses Mechanismus ausgewachsene Blutgefäße zur Verästelung anregen können und so den Blutstrom in schlecht durchblutetem Gewebe steigern können“, sagt Dr. Limbourg.

Um zu verstehen, wie die Verzweigungsmuster von Gefäßen entstehen, untersuchten Dr. Christian Napp und Michael Augustynik die Gefäßentwicklung in der Netzhaut von neugeborenen Mäusen. Die Erstautoren der Publikation interessierte besonders die Frage, ob die Verzweigung von Gefäßen ein zufälliger oder gesteuerter Mechanismus ist und aus welchen Gefäßen neue Abzweigungen entstehen. Bei der Beobachtung des wachsenden Gefäßbaumes machte der Medizindoktorand Michael Augustynik eine interessante Entdeckung: „Damit ein dreidimensionaler Gefäßzweig entstehen kann, muss ein bereits bestehendes Gefäß austreiben. Wir konnten zeigen, dass dieses Austreiben durch das Signalprotein Delta-like 1 reguliert wird.“ Die Wissenschaftler fanden auch heraus, dass Delta-like 1 in spezialisierten Zellen in der Netzhaut gebildet wird. Diese Zellen versammeln sich um die Gefäße und regen so die Bildung von Gefäßverästelungen an.

Ein Bild ist dieser Pressemitteilung angehängt.Es zeigt die dreidimensionale Darstellung der entstehenden Verästelung eines Gefäßes, gesteuert durch Delta-like 1. Oben ist der Normalfall beschrieben: In Grün ist das bestehende Gefäß gezeigt, aus dem in Rot die Verästelungen hervorgehen. In Blau ist ein zweites, tiefer liegendes Gefäßgeflecht gezeigt, welches aus den Abzweigungen entsteht. Auf dem unteren Bild sehen Sie die Situation einer Mutante, die kein Delta-like 1 produzieren kann. Hier bilden sich kaum noch Abzweigungen.

Weitere Informationen erhalten Sie bei PD Dr. Florian P. Limbourg, REBIRTH-Arbeitsgruppenleiter „Regenerative Agents“, Telefon (0511) 532-5302, Limbourg.Florian@mh-hannover.de

Media Contact

Stefan Zorn idw

Weitere Informationen:

http://www.mh-hannover.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer