Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kaltgebrannte Keramik

18.08.2016

Paradigmenwechsel bei der Keramikherstellung: Kalt Sintern statt heiß Brennen

Ob beim Hobbytöpfern oder bei der Herstellung technischer Hochleistungskeramiken – verwendbar ist das Werkstück erst, nachdem es stundenlang bei hohen Temperaturen, meist oberhalb von 1000 °C, gebrannt wurde.


Kalter Sinter-Prozess, basierend auf der Zugabe geringer Wassermengen, die den Stofftransport beim Verdichten erleichtern.

(c) Wiley-VCH

Während der dabei stattfindenden Sinterung „verbacken“ die einzelnen Körnchen miteinander, das Material wird kompakter und erhält die notwendigen Eigenschaften wie mechanische Festigkeit.

Dass Sintern auch bei wesentlich niedrigeren Temperaturen funktioniert, zeigen amerikanische Wissenschaftler in der Zeitschrift Angewandte Chemie. Ihr kalter Sinter-Prozess basiert auf der Zugabe geringer Wassermengen, die den Stofftransport beim Verdichten erleichtern.

„Schon seit der Steinzeit werden Keramiken durch Sintern bei hohen Temperaturen hergestellt“, berichtet Clive A. Randall von der Pennsylvania State University (USA), „so auch die Venus von Dolní Věstonice, eines der ältesten keramischen Erzeugnisse.“

Das traditionelle Brennen könnte jetzt für viele keramische Werkstoffe überflüssig werden, denn eine breite Palette anorganischer Materialien und Verbundstoffe kann auch zwischen Raumtemperatur und 200 °C verdichtet werden.

Beim konventionellen Hochtemperatur-Sintern werden einzelne keramische Pulverpartikel zu einem festen Körper verdichtet. Treibende Kraft ist die Verringerung der hohen Freien Oberflächenenergie des Pulvers durch eine Materialdiffusion – ein Vorgang, der erst bei sehr hohen Temperaturen abläuft. „Beim kalten Sintern sorgen dagegen Lösungseffekte in Wasser für die Materialverdichtung“, so Randall. „Diese finden bereits bei niedrigen Temperaturen statt – unter Druck innerhalb von Minuten statt Stunden.“

Auch wenn die Details für verschiedene Systeme variieren, so konnte doch für eine Reihe keramischer Materialien festgestellt werden, dass zunächst kleine Mengen Wasser als vorübergehende flüssige Phase scharfe Kanten an den Grenzflächen zwischen den Partikeln auflösen, was die Freie Oberflächenenergie des Pulvers verringert.

Bei geeignet eingestellten Druck- und Temperaturverhältnissen diffundiert das gelöste Material durch die Flüssigkeit und schlägt sich dann bevorzugt außerhalb der Kontaktbereiche zwischen den Partikeln nieder. Dadurch schließen sich die Poren und das Material wird kompakter.

Randall: „Das kalte Sintern funktioniert für eine breite Palette anorganischer Verbindungen, wie Metalloxide, Karbonate und auch für Mehrstoff- und Verbundsysteme. Die Eigenschaften der kalt gesinterten Proben entsprachen denen konventionell gesinterter.“ Am Beispiel verschiedener Materialien, z.B. Natriumchlorid, Alkali-Molybdaten, Vanadiumoxid, hatten die Wissenschaftler den Prozess im Detail untersucht.

„Nach Verbundmaterialien aus Keramiken mit Metallen, Polymeren oder anderen Keramiken gibt es eine hohe Nachfrage, aber aufgrund von Unterschieden der thermischen Stabilität, der Schrumpfung und möglicher chemischer Unverträglichkeiten bei hohen Temperaturen lassen sie sich nicht so einfach brennen“, so Randall. „Diese Problematik würde beim kalten Sintern minimiert.“

Zudem eröffnen sich nachhaltigere und kostengünstigere Produktionsalternativen für keramische Materialien. Kalt gesinterte Verbundmaterialien könnten den Zugang zu Systemen mit neuen Eigenschaften für innovative Technologien eröffnen.

Angewandte Chemie: Presseinfo 27/2016

Autor: Clive Randall, The Pennsylvania State University (USA), http://www.matse.psu.edu/directory/faculty/clive-randall

Permalink to the original article: http://dx.doi.org/10.1002/ange.201605443

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.

Weitere Informationen:

http://presse.angewandte.de

Dr. Renate Hoer | Gesellschaft Deutscher Chemiker e.V.

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht IMMUNOQUANT: Bessere Krebstherapien als Ziel
19.10.2018 | Julius-Maximilians-Universität Würzburg

nachricht Auf dem Weg zu maßgeschneiderten Naturstoffen
19.10.2018 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr

19.10.2018 | Materialwissenschaften

IMMUNOQUANT: Bessere Krebstherapien als Ziel

19.10.2018 | Biowissenschaften Chemie

Raum für Bildung: Physik völlig schwerelos

19.10.2018 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics