Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Doppelrolle für CO2

06.08.2012
Kontinuierliche Hydrierung von Kohlendioxid zu reiner Ameisensäure in überkritischem CO2

Um den Verbrauch fossiler Rohstoffe zu reduzieren und gleichzeitig die CO2-Bilanz von Kraftstoffen und chemischen Produkten zu verbessern könnte die Verwendung von Kohlendioxid als Kohlenstoffquelle eine attraktive Option sein.


Eine neue Methode ermöglicht in überkritischem Kohlendioxid die kontinuierliche katalytische Hydrierung von Kohlendioxid zu reiner Ameisensäure. (c) Wiley-VCH

Deutsche Wissenschaftler stellen in der Zeitschrift Angewandte Chemie nun eine neue Methode vor, mit der Kohlendioxid katalytisch zu Ameisensäure hydriert wird. Dabei ist Kohlendioxid nicht nur Ausgangsstoff, sondern dient, in überkritischem Zustand, gleichzeitig als Lösungsmittel für die Abtrennung des Produkts. Mit diesem integrierten Verfahren lässt sich erstmals in einem einzigen Prozessschritt freie Ameisensäure direkt als Produkt gewinnen.

Die Hydrierung von CO2 zu Ameisensäure (HCO2H) wird intensiv erforscht, denn sie eröffnet einen direkten Zugang zu chemischen Produkten auf der Basis von Abfallstoffen aus der energetischen Nutzung fossiler Brennstoffe. Ameisensäure ist ein wichtiges Produkt der chemischen Industrie mit vielfältigen Anwendungen z.B. in der Landwirtschaft, der Lebensmitteltechnologie und der Lederwarenindustrie. Zudem wird sie als möglicher Wasserstoffspeicher in Erwägung gezogen. So könnten mit Brennstoffzellen betriebene Fahrzeuge Ameisensäure tanken, aus der dann Wasserstoff katalytisch freigesetzt würde.

Bereits seit Mitte der 1970er Jahre wird an homogenen Katalysatoren für die Herstellung von Ameisensäure aus CO2 geforscht. Die Tücke liegt darin, dass es sich um eine Gleichgewichtsreaktion handelt, deren Gleichgewicht deutlich auf der Seite der Edukte liegt. Um die ständig ablaufende Rückreaktion zu unterdrücken, muss die Ameisensäure abgefangen werden - in Form von Salzen, Addukten oder Derivaten - um sie aus der Gleichgewichtsbilanz zu entfernen. Damit schließlich die gewünschte freie Ameisensäure erhalten werden kann, sind zusätzliche Verfahrensschritte nötig, um die Addukte vom Katalysator zu trennen und anschließend die Ameisensäure wieder freizusetzen und zu isolieren.

Das Team um Walter Leitner von der RWTH Aachen hat nun ein neues Konzept entwickelt, mit dem reine Ameisensäure in einem kontinuierlichen Verfahren produziert werden kann: Reaktion und Abtrennung laufen dabei integriert in einer einzigen Prozesseinheit ab.

Der Trick liegt in einem zweiphasigen Reaktionssystem mit überkritischem CO2 als mobiler Phase und einem flüssigen Salz - einer ionischen Flüssigkeit - als stationärer Phase: Die ionische Flüssigkeit löst den Katalysator und die Base zum Stabilisieren der Ameisensäure und hält beide im Reaktorraum zurück. Das CO2 strömt bei Drücken und Temperaturen oberhalb der kritischen Daten (74 bar, 31 °C) durch den Reaktor und löst die gebildete Ameisensäure selektiv aus der Mischung heraus. Die Doppelrolle von CO2 sowohl als Reaktant als auch als extraktive Phase hat entscheidende Vorteile: Das Produkt wird kontinuierlich extrahiert und aus dem Reaktor geschleust, somit kann sich das Gleichgewicht immer wieder neu einstellen. Außerhalb des Reaktors lässt sich die freie Ameisensäure durch Druckabsenkung oder Auswaschen direkt aus dem CO2-Strom in reiner Form gewinnen. Ionische Flüssigkeiten lösen sich nicht in überkritischem CO2, ebensowenig wie der Katalysator und die Base, sodass sie das Produkt nicht verunreinigen. Das Verfahren kann so kontinuierlich laufen. In Laborversuchen wurde ein stabiler Betrieb über mehr als 200 Stunden demonstriert.

"Unsere Ergebnisse zeigen am Beispiel der Ameisensäure, dass der gezielte Einsatz von modernen Lösungsmittelkonzepten in kontinuierlichen Reaktoranlagen Stoffumwandlungen ermöglicht, die unter konventionellen Bedingungen nicht durchgeführt werden können", sagt Leitner. "Natürlich kann die Thermodynamik damit nicht 'besiegt' werden - aber es ergeben sich vielfältige Möglichkeiten der Integration von Reaktion und Stofftrennung, die neue Wege zu effizienteren und nachhaltigeren Verfahren eröffnen können".

Angewandte Chemie: Presseinfo 30/2012

Autor: Walter Leitner, RWTH Aachen University (Germany), http://www.tc.rwth-aachen.de/aw/cms/TC/Zielgruppen/~vft/prof_leitner/?lang=de

Angewandte Chemie, Permalink to the article: http://dx.doi.org/10.1002/ange.201203185

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany

Dr. Renate Hoer | GDCh
Weitere Informationen:
http://presse.angewandte.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen
15.10.2018 | Universität Rostock

nachricht Bio-Angeln für Seltene Erden: Wie Eiweiß-Bruchstücke Elektronik-Schrott recyceln
15.10.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen

Die Forschungskooperation zwischen der Universität Yale und der Universität Rostock hat neue wissenschaftliche Ergebnisse hervorgebracht. In der renommierten Zeitschrift „Angewandte Chemie“ berichten die Wissenschaftler über eine Dreierkette aus Ionen gleicher Ladung, die durch sogenannte Wasserstoffbrücken zusammengehalten werden. Damit zeigen die Forscher zum ersten Mal eine Dreierkette aus gleichgeladenen Ionen, die sich im Grunde abstoßen.

Die erfolgreiche Zusammenarbeit zwischen den Professoren Mark Johnson, einem weltbekannten Cluster-Forscher, und Ralf Ludwig aus der Physikalischen Chemie der...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Materiezustände durch Licht verändern

Forscherinnen und Forscher der Universität Hamburg stören die kristalline Ordnung

Physikerinnen und Physikern der Universität Hamburg ist es gelungen, mithilfe von Laserpulsen die Ordnung von Quantenmaterie so zu stören, dass ein spezieller...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Neuartiger topologischer Isolator

Erstmals haben Physiker einen topologischen Isolator gebaut, in dem nicht Elektronen oder Licht fließen, sondern Teilchen aus Licht und Materie. Ihre Neuerung präsentieren sie in „Nature“.

Topologische Isolatoren sind Materialien mit sehr speziellen Eigenschaften. Sie leiten elektrischen Strom oder Lichtteilchen nur an ihrer Oberfläche oder an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

PV Days in Halle zeigen neue Chancen für die Photovoltaik

11.10.2018 | Veranstaltungen

Methan als umweltfreundlicher Kraftstoff für LKW, Busse und andere Nutzfahrzeuge

10.10.2018 | Veranstaltungen

Schlaf ist Medizin: Neue Erkenntnisse aus der Schlafforschung

08.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen

15.10.2018 | Biowissenschaften Chemie

Bio-Angeln für Seltene Erden: Wie Eiweiß-Bruchstücke Elektronik-Schrott recyceln

15.10.2018 | Biowissenschaften Chemie

Sauber trennen: Neuer Klebstoff für besseres Recycling

15.10.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics