Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kurzlebige Leistungsträger im Rampenlicht

31.07.2007
Neuer SFB an der LMU gestartet

Als Werkzeuge oder Bausteine für neuartige Stoffe werden häufig Enzyme und andere Biomoleküle genutzt. Deren Strukturen und Interaktionen dominieren deshalb noch immer die chemische und biochemische Forschung. Doch diese zeitunabhängigen und rein statischen Eigenschaften greifen für ein tieferes Verständnis zu kurz, weil in vielen Fällen reaktive Zwischenstufen eines Moleküls oder aktivierte Enzyme entstehen, die erst die eigentliche Reaktion durchführen. Eben diesen - meist noch unbekannten - dynamischen Parametern widmet sich nun der neue Sonderforschungsbereich (SFB) 749 "Dynamik und Intermediate molekularer Transformation". Sprecher des von der Deutschen Forschungsgemeinschaft (DFG) geförderten Projekts ist Professor Thomas Carell vom Department für Chemie und Biochemie der Ludwig-Maximilians-Universität (LMU) München. Im Rahmen des SFB sollen schwer zu untersuchende molekulare Zwischenstufen unter anderem mit Hilfe moderner Ultrakurzzeitmethoden analysiert werden.

Ohne zeitabhängige Transformationen könnten viele Moleküle ihre Aufgaben nicht übernehmen. Doch oft werden die zugrunde liegenden Prinzipien und die dabei entstehenden Zwischenstufen nicht oder zu wenig verstanden. Schuld daran ist die kurzlebige Natur der reaktiven Intermediate. "Es bedarf teilweise komplizierter zeitauflösender Techniken, um sie fassbar und studierbar zu machen", so Carell. "Es ist dabei unerheblich, ob sich die Forschung auf Prozesse in einem klassischen Reaktionsgefäß oder in einer Zelle konzentriert. Immer bedarf es ausgefeilter Messtechniken, die nur an wenigen Forschungsstandorten weltweit beherrscht werden." Und München ist einer davon. Deshalb wird die dynamische Untersuchung molekularer chemischer und biochemischer Reaktivität mit Hilfe zeitauflösender Laserspektroskopie das zentrale Element im geplanten SFB sein. Zudem vereint München eine weltweit einmalige Zahl von führenden Vertretern der relevanten Forschungsgebiete zur molekularen Dynamik.

Ziel des SFB ist, die Parameter zu untersuchen, die die Reaktivität und Funktion von chemisch und biologisch relevanten Molekülen in Lösung und auch in Zellen steuern. "Wir werden uns dabei auf Prozesse in organischen Lösungsmitteln, die für die synthetische Chemie so bedeutsam sind, und auf Wasser in den biologischen Fragestellungen konzentrieren", berichtet Carell. Reaktionen in der Gasphase stehen nicht im Fokus. "Von Interesse ist für uns dabei nicht nur die Art der reaktiven Zwischenstufen, sondern auch deren Stabilität und die Bildungsgeschwindigkeit, mit der die Aktivierung erfolgt. Denn sie bestimmt wiederum die Reaktivität eines Moleküls." Weil die zu untersuchenden Systeme so komplex sind, werden auch neue Methoden und Konzepte erarbeitet werden müssen. Deren allgemeine Natur wiederum wird ganze Klassen von Prozessen einer Beschreibung zugänglich machen. Insgesamt wird der SFB an den Schnittstellen der drei Disziplinen Chemie, Biologie und Physik tätig sein. Er integriert alle Bestrebungen in den Einzeldisziplinen, den zeitlichen Verlauf chemischer und biochemischer Prozesse zu analysieren.

... mehr zu:
»Enzym »Molekül »Prozess

Im Bereich der Biologie soll unter anderem die Proteinfaltung im Vordergrund stehen, ein für die Funktion der Moleküle essentieller Prozess, der immer noch unzureichend aufgeklärt ist. Dieser dynamische Vorgang verläuft über eine Reihe von zum Teil definierten Zwischenstufen der Faltung. "Aber auch hier sind letztlich nur die sehr einfachen Systeme gut verstanden", meint Carell. "Allgemein haben sich Enzyme, die radikalische Zwischenstufen generieren, bislang nahezu vollständig einer besseren mechanistischen Untersuchung entzogen. Hier wollen wir Untersuchungen mit zeitauflösenden Techniken durchführen." Wichtig ist auch, dass die Reaktivität der Systeme oft durch die Positionierung eines Enzyms in der Zelle und die dadurch erzeugte spezifische Umgebung reguliert wird. "Die Untersuchung der enzymatischen Aktivität in der Zelle ist ein neues und sehr spannendes Gebiet", berichtet Carell. "Auch dieses neue Forschungsfeld werden wir im SFB verfolgen."

Enzyme und metallorganische Katalysatoren sind zudem auch das Rückgrat der modernen Prozesschemie. "Die fundamentalen Verständnisdefizite im Bereich der Dynamik dieser molekularen Systeme sind deshalb besonders beklagenswert", meint Carell. "Wären metallorganische Prozesse besser verstanden, könnten die im Labor entwickelten Systeme sehr viel leichter in großtechnische Prozesse integriert werden." Auch ließen sich neue Katalysatorsysteme und neue Reaktionen planbarer finden. Bislang sind enzymatische Prozesse und die evolutive Optimierung der Biokatalysatoren noch auf einfachste Systeme beschränkt, weil wenig über die komplexeren Enzyme bekannt ist. "Einige davon könnten aber dabei helfen, eine nachhaltige, moderne und umweltschonende Chemie in der Industrie aufzubauen", meint Carell. "Wir erwarten aber auch neue Ergebnisse, die Einzug in die Lehrbücher halten könnten."

Ansprechpartner:
Professor Dr. Thomas Carell
Department für Chemie und Biochemie
Tel.: 089 / 2180-77755
E-Mail: Thomas.Carell@cup.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Berichte zu: Enzym Molekül Prozess

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Optische Kontrolle von Herzfrequenz oder Insulinsekretion durch lichtschaltbaren Wirkstoff
17.07.2018 | Heinrich-Heine-Universität Düsseldorf

nachricht Künstliche neuronale Netze helfen, das Gehirn zu kartieren
17.07.2018 | Max-Planck-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Pflanzenmütter kommunizieren mit ihren Embryonen über das Hormon Auxin

17.07.2018 | Biowissenschaften Chemie

Ein Haus wird zum Internetstar

17.07.2018 | Architektur Bauwesen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics