Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stammzellforschung

11.02.2002


In Ulm entsteht ein Zentrum der Stammzellforschung 11,5 Mio. Euro für ein Life-Sciences-Gebäude

Die Stammzellforschung und was damit zusammenhängt, also insbesondere ihre therapeutischen Aspekte, werden sich in den kommenden Jahren zu einem beherrschenden Thema entwickeln. Dabei reduziert sich die Bedeutung des Komplexes nicht nur auf die embryonalen Stammzellen, von denen in der Gegenwart soviel die Rede ist und deren Beforschung nach der Bundestagsabstimmung vom 30. Januar 2002 künftig auch in Deutschland in gewissen Grenzen möglich sein wird. Das Thema hat viele Dimensionen. Nicht zuletzt gehören dazu die Arbeiten an adulten Stammzellen und an sogenannten Progenietorzellen in den Organen selbst. Sie werden künftig einen Schwerpunkt an der Universität Ulm haben.

Die Bemühungen der Universität Ulm um die Entwicklung eines Schwerpunktes "Stammzellbiologie" wurden durch die Empfehlung einer Kommission nachhaltig bestätigt, die im Auftrag der baden-württembergischen Landesregierung im vergangenen Jahr die Life Sciences an den Universitäten des Landes evaluierte. Den Vorsitz dieser Kommission führte Prof. Dr. Detlev Ganten, Stiftungsvorstand des Max-Dellbrück-Zentrums für Molekulare Medizin, Berlin (MDZ) und Vorsitzender der Helmholtz-Gemeinschaft Deutscher Forschungszentren. Das Votum seiner Kommission traf zusammen mit einer Bewerbung Ulms um finanzielle Mittel für den Ausbau der Life Sciences, die im Kontext der Zukunftsoffensive Baden-Württemberg ausgelobt worden waren. Sechs Universitäten bewarben sich darum, drei waren erfolgreich: neben Ulm Heidelberg und Freiburg.

Über 20 Abteilungen aus fünf Fakultäten der Universität Ulm hatten unter Leitung von Prorektor Prof. Dr. Vinzenz Hombach, Ärztlicher Direktor der Abteilung Innere Medizin II (Kardiologie) Anteil an der Ausarbeitung eines Konzepts unter dem Generalthema "Zyto-Organo-Poese", der regenerativen Zell- und Organtherapie. Die Schlüssigkeit dieses Konzepts, das nicht nur unterschiedliche Fachrichtungen integriert, sondern auch das Element einer gezielten Öffentlichkeitsarbeit einschließlich der institutionalisierten Diskussion mit der Öffentlichkeit über ethisch relevante Aspekte der Forschung einbezieht, führte zum Erfolg und dazu, dass 11,5 Mio. Euro für den Bau eines Forschungsgebäudes zugesagt worden sind, das zusammen mit einem weiteren

Gebäude ("Verfügungskreuz") an den östlichen Arm der Universitätsbauten (O27 / N26) angefügt werden soll. Der Baukomplex wurde inzwischen als Architektenwettbewerb europaweit ausgeschrieben.

Das Forschungsnetz Zyto-Organo-Poese Ulm (F-Net-ZOP Ulm) bearbeitet in großen Teilen Aspekte des Tissue Engineering, also der Erzeugung und des funktionalen "Designs" von Organersatzteilen, Geweben, Organteilen oder möglicherweise später einmal von ganzen Organen sowie die In-situ-Manipulation mit Wachstumsfaktoren und anderen Substanzen zur Heilung von Organdefekten bzw. von funktionellen Störungen. Bekanntlich werden ja auf diesem Sektor besonders große Erwartungen in die embryonalen Stammzellen gesetzt. Doch bei aller Fokussierung auf die embryonalen Stammzellen, die durch die heftigen Diskussionen um die rechtliche Zulässigkeit ihrer Verwertung zu Forschungszwecken, mithin ihres Verbrauchs, verstärkt wurde, vermutet die Wissenschaft auch in den adulten Stammzellen ein großes Potential für das Tissue Engeneering, das es durch entsprechende Forschungsarbeiten freizulegen und fruchtbar zu machen gilt. In Ulm sollen die adulten Stammzellen im Vordergrund stehen. Als Bestandteile der Entwicklung dieses Forschungskomplexes sind die Gründung einer Abteilung "Stammzellbiologie" mit molekularbiologisch-theoretischer Grundlagenforschung zum biologischen Verhalten von embryonalen tierischen Stammzellen und adulten Stammzellen von Mensch und Tier sowie die Einrichtung zweier neuer Studiengänge "Biochemie" und "Molekulare Medizin" vorgesehen.

Das Tissue Engeneering umfasst eine Reihe unterschiedlicher methodischer Ansätze, angefangen bei der Applikation von biologisch-aktiven Molekülen (Wachstumsfaktoren usw.), die als Direktinjektionen in das Zielorgan Organfunktionen beeinflussen bzw. wiederherstellen sollen. Hierher gehören auch die Injektion resorbierbarer Polymere als Transporter von Wachstumsfaktoren, die Übertragung von Transgenen, die die Bildung von Wachstumsfaktoren in den Zielorganen anregen sowie die Implantation dreidimensionaler Matrizes (Polymergerüste), die eine Besiedlung mit körpereigenen Zellen ermöglichen. Weitere Tissue-Engineering-Methodiken sind die Transplantation in Kultur gehaltener ausdifferenzierter Organzellen oder manipulierter Organstammzellen, sogenannter Progenietorzellen, bzw. fetaler und embryonaler Stammzellen; künstlich hergestellte Zell-Polymer-Matrizes zur Implantation teilungsfähiger ausdifferenzierter Zellen oder zur extrakorporalen Produktion von Organzellen aus Stammzellen; die Entwicklung von Biohybridsystemen mit körperfremden Zellen spezifischer Funktion sowie die Schaffung von immunneutralen Zellen oder Organen zur Transplantation eines universellen Spenderzelltyps aus embryonalen Stammzellen oder eines Zelltyps mit genetischer Identität zum Patienten, gleichfalls aus embryonalen Stammzellen (therapeutisches Klonen).

Peter Pietschmann | idw

Weitere Berichte zu: Organ Stammzelle Stammzellforschung Wachstumsfaktor

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht HD-Mikroskopie in Millisekunden
20.09.2019 | Universität Bielefeld

nachricht Alpenflora im Klimawandel: Pflanzen reagieren mit "Verspätung"
20.09.2019 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ferroelektrizität verbessert Perowskit-Solarzellen

20.09.2019 | Energie und Elektrotechnik

HD-Mikroskopie in Millisekunden

20.09.2019 | Biowissenschaften Chemie

Kinobilder aus lebenden Zellen: Forscherteam aus Jena und Bielefeld 
verbessert superauflösende Mikroskopie

20.09.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics