Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Gehirn schützt sich selber vor Reizüberflutung

19.05.2006
In den Nervenzellen der Hirnrinde werden sowohl Impulse aus den Sinnesorganen als auch Erinnerungen verarbeitet. Berner Forscher haben nun herausgefunden, dass Nervenzellen auch als "Unterdücker" von bestimmten Impulsen fungieren. Ohne diese hemmende Funktion wäre unser Gehirn von den dauernden Informationsströmen überfordert. Die Forschungsergebnisse werden in der aktuellen Ausgabe des renommierten Journals "Neuron" als Titelgeschichte publiziert.

Die Hirnrinde besteht aus einer wenige Millimeter dünnen Schicht aus Nervenzellen und ist für die Verarbeitung von unzähligen Nervensignalen zuständig. Einerseits erhalten grosse Nervenzellen, die sogenannten Pyramidenzellen, Signale aus den Sinnesorganen. Andererseits erhalten sie auch Informationen aus anderen Hirnarealen wie Erinnerungen, um die Sinnesinformationen richtig interpretieren und weiterleiten zu können. Impulse aus den Sinnesorganen werden als sogenannte "Bottom-up-Information" bezeichnet, solche aus übergeordneten Hirnbereichen wie Erinnerungen als "Top-down-Information". Diese getrennten Informationsströme erregen die Pyramidenzellen in zwei verschiedenen Bereichen, die eine unterschiedliche Struktur und Funktion aufweisen. Erhält eine Nervenzelle jedoch gleichzeitig Informationen aus einem Sinnesorgan und übergeordneten Hirnarealen, muss sie "umdisponieren": Den gleichzeitigen Eingang von "Top-down-" und "Bottom-up-Information" beantwortet die Pyramidenzelle mit einem stark erhöhten Erregungszustand, der durch einen Einstrom von Kalzium-Ionen in die Pyramidenzelle ausgelöst wird.


Modell einer Pyramidenzelle mit Messelektroden, die über ihre Verästelungen, sogenannte Dendriten, gleichzeitig "Top-down-" (rot) und "Bottom-up-Information" (gelb) erhält. Der blaue Teil kennzeichnet Dendriten, die noch sehr wenig erforscht sind und in der vorliegenden Arbeit nicht berücksichtigt wurden. Bild: Institut für Physiologie, Bern.

Prof. Matthew Larkum und sein Mitarbeiter am Institut für Physiologie der Universität Bern konnten nun erstmals zeigen, dass hemmende Nervenzellen in der Hirnrinde "Top-down"-Signale selektiv unterdrücken können. Diese hemmenden Nervenzellen schütten eine chemische Substanz aus (GABA=Gamma-Amino-Buttersäure), welche über spezifische Rezeptoren den Kalziumeinstrom in die Pyramidenzellen verhindern. Die "Top-down-Information" wird somit vollständig unterdrückt. In mehrjähriger Arbeit gelang es den Forschern, die zellulären und molekularen Prozesse, welche diesem Veto-Mechanismus zugrunde liegen, zu charakterisieren.

Unterdrückte Impulse ermöglichen eine bewusste Wahrnehmung

Diese bahnbrechende Arbeit erlaubt eine neue Sicht auf die Funktionsweise des Gehirns. "Wir konnten aufzeigen, wie hoch spezifisch, zeitlich und räumlich präzise orchestriert die Hemmungsmechanismen im Gehirn eingesetzt werden, um den ununterbrochenen Erregungsstrom aus den Sinnesorganen und den höheren Hirnregionen zu regulieren", erklärt Prof. Hans-Rudolf Lüscher vom Institut für Physiologie. Diese Vorgänge erlauben eine gerichtete Aufmerksamkeit sowie die Einbindung von Sinneseindrücken zu einer einheitlichen Wahrnehmung. "Ohne diese Hemmungsmechanismen", so Lüscher, "wären alle sensorischen Hirnrindenareale maximal erregt, ähnlich einem elektrischen Gewitter". Dies würde eine bewusste und differenzierte Wahrnehmung unserer Umwelt verunmöglichen. Aufbauend auf diesen Resultaten, welche an einem In Vitro-Präparat gewonnen wurden, will die Forschergruppe um Prof. Larkum in Zukunft untersuchen, wie diese zellulären Mechanismen das Verhalten eines intakten Organismus beeinflussen.

Nervenzellen: bestens vernetzt

Die menschliche Hirnrinde bedeckt das Gehirn und besteht aus einer wenige Millimeter dicken Schicht von Nervenzellen. In dieser hochkomplexen Struktur verarbeitet das Gehirn den ununterbrochenen Zustrom von Nervensignalen aus den Sinnesorganen und konstruiert daraus ein Abbild der Welt, die uns umgibt. Eindrücke von Farbe, Form oder Bewegung werden in verschiedenen, teilweise weit auseinander liegenden Hirnarealen verarbeitet. Damit im Gehirn eine einheitliche Wahrnehmung zustande kommt, müssen die elementaren Sinnesinformationen (wie z.B. Farbe, Form usw.) zu einer übergeordneten, funktionellen Einheit zusammengebunden werden. Dieses Zusammenführen der verschiedenen Informationsströme wird durch einen zellulären Mechanismus realisiert, der die Nervenzellen in einen speziellen Zustand versetzt, sobald sie Informationen aus unterschiedlichen Hirnstrukturen gleichzeitig erhalten. Die Sinnesinformation wird auch anhand von Erfahrungen aus dem Gedächtnis interpretiert. Zudem wird uns nicht jede Sinnesinformation auch bewusst, sondern nur diejenige, worauf das Gehirn seine Aufmerksamkeit lenkt.

Nathalie Matter | idw
Weitere Informationen:
http://www.kommunikation.unibe.ch/medien/mitteilungen/news/2006/neuronen.html
http://www.neuron.org/content/current

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sich vermehren oder sich nicht vermehren
22.03.2019 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Ketten aus Stickstoff direkt erzeugt
22.03.2019 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Zähmung der Lichtschraube

Wissenschaftler vom DESY und MPSD erzeugen in Festkörpern hohe-Harmonische Lichtpulse mit geregeltem Polarisationszustand, indem sie sich die Kristallsymmetrie und attosekundenschnelle Elektronendynamik zunutze machen. Die neu etablierte Technik könnte faszinierende Anwendungen in der ultraschnellen Petahertz-Elektronik und in spektroskopischen Untersuchungen neuartiger Quantenmaterialien finden.

Der nichtlineare Prozess der Erzeugung hoher Harmonischer (HHG) in Gasen ist einer der Grundsteine der Attosekundenwissenschaft (eine Attosekunde ist ein...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetische Mikroboote

Nano- und Mikrotechnologie sind nicht nur für medizinische Anwendungen wie in der Wirkstofffreisetzung vielversprechende Kandidaten, sondern auch für die Entwicklung kleiner Roboter oder flexibler integrierter Sensoren. Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) haben mit einer neu entwickelten Methode magnetische Mikropartikel hergestellt, die den Weg für den Bau von Mikromotoren oder die Zielführung von Medikamenten im menschlichen Körper, wie z.B. zu einem Tumor, ebnen könnten. Die Herstellung solcher Strukturen sowie deren Bewegung kann einfach durch Magnetfelder gesteuert werden und findet daher Anwendung in einer Vielzahl von Bereichen.

Die magnetischen Eigenschaften eines Materials bestimmen, wie dieses Material auf das Vorhandensein eines Magnetfeldes reagiert. Eisenoxid ist der...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Goldkugel im goldenen Käfig

„Goldenes Fulleren“: Liganden-geschützter Nanocluster aus 32 Goldatomen

Forschern ist es gelungen, eine winzige Struktur aus 32 Goldatomen zu synthetisieren. Dieser Nanocluster hat einen Kern aus 12 Goldatomen, der von einer Schale...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größte nationale Tagung 2019 für Nuklearmedizin in Bremen

21.03.2019 | Veranstaltungen

6. Magdeburger Brand- und Explosionsschutztage vom 25. bis 26.3. 2019

21.03.2019 | Veranstaltungen

Teilchenphysik trifft Didaktik und künstliche Intelligenz in Aachen

20.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zähmung der Lichtschraube

22.03.2019 | Physik Astronomie

Saarbrücker Forscher erleichtern durch Open Source-Software den Durchblick bei Massen-Sensordaten

22.03.2019 | HANNOVER MESSE

Ketten aus Stickstoff direkt erzeugt

22.03.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics