Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Gehirn schützt sich selber vor Reizüberflutung

19.05.2006
In den Nervenzellen der Hirnrinde werden sowohl Impulse aus den Sinnesorganen als auch Erinnerungen verarbeitet. Berner Forscher haben nun herausgefunden, dass Nervenzellen auch als "Unterdücker" von bestimmten Impulsen fungieren. Ohne diese hemmende Funktion wäre unser Gehirn von den dauernden Informationsströmen überfordert. Die Forschungsergebnisse werden in der aktuellen Ausgabe des renommierten Journals "Neuron" als Titelgeschichte publiziert.

Die Hirnrinde besteht aus einer wenige Millimeter dünnen Schicht aus Nervenzellen und ist für die Verarbeitung von unzähligen Nervensignalen zuständig. Einerseits erhalten grosse Nervenzellen, die sogenannten Pyramidenzellen, Signale aus den Sinnesorganen. Andererseits erhalten sie auch Informationen aus anderen Hirnarealen wie Erinnerungen, um die Sinnesinformationen richtig interpretieren und weiterleiten zu können. Impulse aus den Sinnesorganen werden als sogenannte "Bottom-up-Information" bezeichnet, solche aus übergeordneten Hirnbereichen wie Erinnerungen als "Top-down-Information". Diese getrennten Informationsströme erregen die Pyramidenzellen in zwei verschiedenen Bereichen, die eine unterschiedliche Struktur und Funktion aufweisen. Erhält eine Nervenzelle jedoch gleichzeitig Informationen aus einem Sinnesorgan und übergeordneten Hirnarealen, muss sie "umdisponieren": Den gleichzeitigen Eingang von "Top-down-" und "Bottom-up-Information" beantwortet die Pyramidenzelle mit einem stark erhöhten Erregungszustand, der durch einen Einstrom von Kalzium-Ionen in die Pyramidenzelle ausgelöst wird.


Modell einer Pyramidenzelle mit Messelektroden, die über ihre Verästelungen, sogenannte Dendriten, gleichzeitig "Top-down-" (rot) und "Bottom-up-Information" (gelb) erhält. Der blaue Teil kennzeichnet Dendriten, die noch sehr wenig erforscht sind und in der vorliegenden Arbeit nicht berücksichtigt wurden. Bild: Institut für Physiologie, Bern.

Prof. Matthew Larkum und sein Mitarbeiter am Institut für Physiologie der Universität Bern konnten nun erstmals zeigen, dass hemmende Nervenzellen in der Hirnrinde "Top-down"-Signale selektiv unterdrücken können. Diese hemmenden Nervenzellen schütten eine chemische Substanz aus (GABA=Gamma-Amino-Buttersäure), welche über spezifische Rezeptoren den Kalziumeinstrom in die Pyramidenzellen verhindern. Die "Top-down-Information" wird somit vollständig unterdrückt. In mehrjähriger Arbeit gelang es den Forschern, die zellulären und molekularen Prozesse, welche diesem Veto-Mechanismus zugrunde liegen, zu charakterisieren.

Unterdrückte Impulse ermöglichen eine bewusste Wahrnehmung

Diese bahnbrechende Arbeit erlaubt eine neue Sicht auf die Funktionsweise des Gehirns. "Wir konnten aufzeigen, wie hoch spezifisch, zeitlich und räumlich präzise orchestriert die Hemmungsmechanismen im Gehirn eingesetzt werden, um den ununterbrochenen Erregungsstrom aus den Sinnesorganen und den höheren Hirnregionen zu regulieren", erklärt Prof. Hans-Rudolf Lüscher vom Institut für Physiologie. Diese Vorgänge erlauben eine gerichtete Aufmerksamkeit sowie die Einbindung von Sinneseindrücken zu einer einheitlichen Wahrnehmung. "Ohne diese Hemmungsmechanismen", so Lüscher, "wären alle sensorischen Hirnrindenareale maximal erregt, ähnlich einem elektrischen Gewitter". Dies würde eine bewusste und differenzierte Wahrnehmung unserer Umwelt verunmöglichen. Aufbauend auf diesen Resultaten, welche an einem In Vitro-Präparat gewonnen wurden, will die Forschergruppe um Prof. Larkum in Zukunft untersuchen, wie diese zellulären Mechanismen das Verhalten eines intakten Organismus beeinflussen.

Nervenzellen: bestens vernetzt

Die menschliche Hirnrinde bedeckt das Gehirn und besteht aus einer wenige Millimeter dicken Schicht von Nervenzellen. In dieser hochkomplexen Struktur verarbeitet das Gehirn den ununterbrochenen Zustrom von Nervensignalen aus den Sinnesorganen und konstruiert daraus ein Abbild der Welt, die uns umgibt. Eindrücke von Farbe, Form oder Bewegung werden in verschiedenen, teilweise weit auseinander liegenden Hirnarealen verarbeitet. Damit im Gehirn eine einheitliche Wahrnehmung zustande kommt, müssen die elementaren Sinnesinformationen (wie z.B. Farbe, Form usw.) zu einer übergeordneten, funktionellen Einheit zusammengebunden werden. Dieses Zusammenführen der verschiedenen Informationsströme wird durch einen zellulären Mechanismus realisiert, der die Nervenzellen in einen speziellen Zustand versetzt, sobald sie Informationen aus unterschiedlichen Hirnstrukturen gleichzeitig erhalten. Die Sinnesinformation wird auch anhand von Erfahrungen aus dem Gedächtnis interpretiert. Zudem wird uns nicht jede Sinnesinformation auch bewusst, sondern nur diejenige, worauf das Gehirn seine Aufmerksamkeit lenkt.

Nathalie Matter | idw
Weitere Informationen:
http://www.kommunikation.unibe.ch/medien/mitteilungen/news/2006/neuronen.html
http://www.neuron.org/content/current

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entstanden Nervenzellen, um mit Mikroben zu sprechen?
10.07.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Forscher der Universität Bayreuth entdecken außergewöhnliche Regeneration von Nervenzellen
09.07.2020 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg

10.07.2020 | Informationstechnologie

Binnenschifffahrt soll revolutioniert werden: Erst ferngesteuert, dann selbstfahrend

10.07.2020 | Verkehr Logistik

Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie

10.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics