Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bioinformatik erschließt neue Strategien gegen Krebs

03.03.2006


Saarbrücker Forscherteam entwickelt Vorhersagemodell für epigenetische Veränderungen der DNA


Ein methyliertes DNA-Molekül. fehlerhafte Methylierungen im menschlichen Erbgut können Krebs verursachen. Bild: Max-Planck-Institut für Informatik


Krebszellen umgehen natürliche Kontrollen und vermehren sich exponentiell. Bild: Max-Planck-Institut für Informatik



Die Methylierung der DNA, also das Anhängen von Methylgruppen an bestimmte DNA-Bausteine, ist an der Steuerung unserer Gene entscheidend beteiligt. Durch eine fehlerhafte Methylierung wird das Ablesen der Erbinformation in Zellen behindert, was zur Entstehung von Krebs führen kann. Jetzt haben Wissenschaftler des Max-Planck-Instituts für Informatik in Zusammenarbeit mit Genetikern der Universität des Saarlandes ein Programm entwickelt, mit dem man die Verteilung von Methylgruppen im Erbgut gesunder Zellen vorhersagen kann. Aus dem Vergleich der Methylierungsmuster von gesundem Gewebe und Krebszellen sollen in Zukunft Konzepte für verträglichere Medikamente gegen Krebs entwickelt werden (PLoS Genetics, 3. März 2006).



Nach dem klassischen Verständnis von Krebs können Veränderungen unseres Erbgutes zur Bildung von Tumoren führen. Veränderungen können etwa sein: das Austauschen, Löschen oder Vervielfältigen von einzelnen DNA-Bausteinen bis hin zu ganzen Erbgut-Abschnitten auf den Chromosomen. Da diese Schäden unumkehrbar sind, zielen chirurgische Operationen und Chemotherapie darauf ab, bei einem Patienten alle Krebszellen zu entfernen oder zu zerstören. Doch leider sind genetische Veränderungen oft erst in einem sehr späten Stadium der Krankheit feststellbar, was eine wirksame Therapie stark erschwert.

Um bessere Behandlungsmethoden gegen Krebs zu entwickeln, wählten die Saarbrücker Wissenschaftler deshalb einen neuen Ansatz: die Epigenetik. Dieses Forschungsgebiet beruht auf der Erkenntnis, dass es im Erbgut vererbbare Modifikationen gibt, die nicht mit der Veränderung der DNA-Sequenz, also der Abfolge der DNA-Bausteine einhergehen. Eine solche Modifikation ist beispielsweise das Anhängen von Methylgruppen an DNA-Bausteine.

In gesunden Zellen erfüllt die Methylierung der DNA viele lebenswichtige Aufgaben: Sie schützt die Zelle vor fremder DNA, hilft Fehler bei der Neubildung von DNA zu korrigieren und die Aktivität von Genen zu steuern. Bei Krebszellen ist die Methylierung gestört, so dass DNA-Bereiche methyliert werden, die normalerweise unmethyliert bleiben sollten. Dadurch können bestimmte Gene nicht mehr abgelesen werden, was zu einer fehlerhaften Entwicklung dieser Zellen führt.

Doch epigenetische Modifikationen von Krebszellen sind prinzipiell umkehrbar. Deshalb sollte es möglich sein, Tumore mit neuen Medikamenten in einen harmlosen Zustand zurückzuverwandeln, anstatt sie abzutöten oder zu entfernen. Mehrere Labore und Pharma-Unternehmen haben bereits erste Schritte zur Entwicklung von epigenetischen Krebs-Medikamenten unternommen. Diese Medikamente wirken, indem sie die DNA-Methylierung von Krebszellen verändern. Dabei machen sie nicht nur die epigenetischen Veränderungen in den Tumorzellen rückgängig, sondern sie beeinflussen auch die natürliche DNA-Methylierung, die für eine normale Zellentwicklung notwendig ist. Deshalb haben epigenetische Medikamente bisher ebenfalls schwere Nebenwirkungen und können - wie auch die klassische Chemotherapie - zu Schäden bei späteren Nachkommen der Patienten führen.

Ziel der Forscherguppe am Zentrum für Bioinformatik Saar ist es, DNA-Methylierungsmuster im menschlichen Erbgut besser zu verstehen. Wenn sie dieses Rätsel lösen könnten, ließen sich möglicherweise Medikamente "maßschneidern", die sich durch deutlich geringere Nebenwirkungen auszeichnen.

Im ersten Schritt entwickelte Christoph Bock aus der Abteilung von Prof. Thomas Lengauer am Max-Planck-Institut für Informatik eine Software, mit der man experimentell ermittelte DNA-Methylierungsdaten auf ihre Richtigkeit überprüfen kann. In Kooperation mit dem Team um Prof. Jörn Walter an der Universität des Saarlandes wurde die Praxistauglichkeit dieser Software nachgewiesen.

Darauf aufbauend verglichen die Wissenschaftler die DNA-Methylierungsmuster im Blut von gesunden Patienten mit verschiedenen Informationen über das menschliche Erbgut. Dabei entdeckten sie drei Gruppen von Eigenschaften menschlicher DNA, die für eine normale DNA-Methylierung entscheidend sind: die DNA-Sequenz, sich wiederholende DNA-Abschnitte und die dreidimensionale Struktur der DNA.

Dadurch waren die Forscher in der Lage, die Verteilung von Methylgruppen in der DNA mit neunzigprozentiger Genauigkeit vorherzusagen. Denn trotz der Entschlüsselung des menschlichen Genoms stehen den Wissenschaftlern bisher keine genomweiten DNA-Methylierungsdaten zur Verfügung. Daher sind solche Vorhersagen sehr hilfreich, um beispielsweise krebsbedingte Fehlmethylierungen zu untersuchen.

Als nächstes wollen die Saarbrücker Wissenschaftler die Methylierungsmuster von Krebszellen und gesunden Zellen miteinander vergleichen und prüfen, ob sich die für Krebs typischen Muster vorhersagen lassen. Darüber hinaus wollen sie untersuchen, wie sich eine Methylierungsveränderung durch ein epigenetisches Krebsmedikament auf das Genom auswirkt. Aus der Analyse der Veränderungsmuster lassen sich Konzepte für bessere epigenetische Medikamente mit erheblich weniger Nebenwirkungen entwickeln.

Originalveröffentlichung:

Bock C, Paulsen M, Tierling S, Mikeska T, Lengauer T, Walter J
CpG island methylation in human lymphocytes is highly correlated with DNA sequence, repeats, and predicted DNA structure
PLoS Genetics, 3 March 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: DNA Erbgut Krebszelle Medikament Methylgruppen Methylierung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Erkenntnis: Darmbakterien werden stark durch die Bauchspeicheldrüse kontrolliert
19.03.2019 | Universität Greifswald

nachricht Mikroben können auf Stickstoffmonoxid (NO) wachsen
18.03.2019 | Max-Planck-Institut für Marine Mikrobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kartographie eines fernen Sterns

Der am Leibniz-Institut für Astrophysik Potsdam (AIP) gefertigte Spektrograph PEPSI zeigt erste Aufnahmen der Struktur des Magnetfelds auf der Oberfläche eines weit entfernten Sterns. Mittels innovativer Verfahren lassen sich damit neue Erkenntnisse über die Vorgänge auf der Sternoberfläche gewinnen. Die Ergebnisse stellte ein Wissenschaftlerteam nun in der Fachzeitschrift Astronomy & Astrophysics vor.

Selbst mit den größten Teleskopen erscheinen die Oberflächen entfernter Sterne normalerweise nur als Lichtpunkte. Eine detaillierte Auflösung wird erst mittels...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Oszillation im Muskelgewebe

Wenn ein Muskel wächst oder eine Verletzung in ihm ausheilt, verwandelt sich ein Teil seiner Stammzellen in neue Muskelzellen. Wie dieser Prozess über zwei oszillierend hergestellte Proteine gesteuert wird, beschreibt nun das MDC-Team um Carmen Birchmeier im Fachjournal „Genes & Development“.

Die Stammzellen des Muskels müssen jederzeit auf dem Sprung sein: Wird der Muskel beispielsweise beim Sport verletzt, ist es ihre Aufgabe, sich so rasch wie...

Im Focus: Das Geheimnis des Vakuums erstmals nachweisen

Neue Forschungsgruppe an der Universität Jena vereint Theorie und Experiment, um erstmals bestimmte physikalische Prozesse im Quantenvakuum nachzuweisen

Für die meisten Menschen ist das Vakuum ein leerer Raum. Die Quantenphysik hingegen geht davon aus, dass selbst in diesem Zustand niedrigster Energie noch...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Künstliche Intelligenz: Ausprobieren und diskutieren

19.03.2019 | Veranstaltungen

Wissenschaftliche Tagung zur Gesundheit von Meeressäugern

18.03.2019 | Veranstaltungen

Tuberkulose - eine der ältesten Krankheiten der Menschheit eliminieren!

15.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kartographie eines fernen Sterns

19.03.2019 | Physik Astronomie

Schlauer Handschuh für Industrie 4.0: Forscher verbinden die Hand mit der virtuellen Welt

19.03.2019 | HANNOVER MESSE

Das neue Original für Industrie 4.0 - Rittal mit neuen Gehäuseserien AX und KX

19.03.2019 | HANNOVER MESSE

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics