Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Photochemische "Handarbeit" - TUM-Chemiker entwickeln neuen enantioselektiven Reaktionstyp

08.09.2005


Einem Wissenschaftler-Team am Lehrstuhl für Organische Chemie der TU München (Prof. Thorsten Bach) ist es gelungen, eine durch Licht induzierte, photochemische Reaktion erstmals mit Hilfe eines Katalysators zu steuern und neue, so genannte "enantioselektive" Reaktionstypen zu entwickeln. Über die aktuellen Forschungsergebnisse wurde kürzlich in der Zeitschrift Nature berichtet.*) Für die Pharmaindustrie sind derartige Reaktionen und die damit zugänglichen Verbindungen von hohem Interesse, lassen sich hierdurch doch ganz gezielt bestimmte Moleküle (Enantiomere) mit der gewünschten Wirkung herstellen und als Wirksubstanz einsetzen.



Viele Dinge des Alltags gibt es in zwei Versionen: Unsere Hände beispielsweise sind in ihrer Struktur gleich, verhalten sich zueinander aber spiegelbildlich. Viele chemische Verbindungen zeigen dieses ?Händigkeit" genannte Phänomen ebenfalls: sie sind "chiral" (nach dem griechischen Wort für Hand). In der Wissenschaft heißen die beiden zueinander spiegelbildlichen Formen - die Hände - Enantiomere, die in einer ansonsten gleichen Verbindung häufig jedoch ganz unterschiedliche biologische Eigenschaften aufweisen. So kann bei einem medizinischen Wirkstoff das eine Enantiomer den gewünschten Effekt haben, das andere aber keine oder gar negative Wirkung. Deshalb ist es für die pharmazeutische Industrie von großem Interesse, gezielt die "richtigen" Enantiomere herstellen zu können. Bezeichnet wird dies als "enantioselektive Synthese", die sehr diffizil ist und oftmals nur für einen bestimmten Typ von Reaktion möglich.



Ein Katalysator beschleunigt eine Reaktion, geht aber selbst aus dieser Reaktion unverändert hervor. Photochemische Reaktionen, wie sie auch im natürlichen Prozess der Photosynthese eine wichtige Rolle spielen, sind häufig mit einem Elektronentransfer verbunden: Ein Elektron wird von einem Molekül auf ein anderes übertragen. Das Forscherteam um Prof. Bach konnte nun die Enantioselektivität einer derartigen Elektronentransfer-Reaktion erstmals gezielt beeinflussen. Dies gelang mit Hilfe eines organischen Katalysators, der die Reaktion sowohl beschleunigt als auch die Händigkeit des Reaktionsprodukts bestimmt. Er bindet an das Ausgangsmolekül, absorbiert Licht und nutzt diese Energie, um ein Elektron aus dem Ausgangsmolekül zu stehlen. Danach wandelt sich das Ausgangsmolekül zum Produkt um. Das Produktmolekül erhält das gestohlene Elektron wieder vom Katalysator zurück. Da der Katalysator wie ein Handschuh wirkt, in den nur die richtige Hand hineinpasst, entsteht auch nur das Produkt, das die gewünschte Händigkeit hat. Das Prinzip dieser Reaktion könnte für die Entwicklung neuer Reaktionen in der pharmazeutischen Industrie von enormer Bedeutung sein.

*) Nature 2005, 436, 1139-1140

Kontakt:
Prof. Dr. Thorsten Bach, Lehrstuhl für Organische Chemie I
Tel: 089/289-13330, thorsten.bach@ch.tum.de

www.tu-muenchen.de/ | idw
Weitere Informationen:
http://www.tu-muenchen.de/

Weitere Berichte zu: Ausgangsmolekül Elektron Enantiomer Katalysator Reaktionstyp

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzen stoßen das Treibhausgas Lachgas in klimarelevanten Mengen aus
18.10.2018 | Universität Heidelberg

nachricht Sinneswahrnehmung ist keine Einbahnstraße
17.10.2018 | Eberhard Karls Universität Tübingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Im Focus: Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen

Die Forschungskooperation zwischen der Universität Yale und der Universität Rostock hat neue wissenschaftliche Ergebnisse hervorgebracht. In der renommierten Zeitschrift „Angewandte Chemie“ berichten die Wissenschaftler über eine Dreierkette aus Ionen gleicher Ladung, die durch sogenannte Wasserstoffbrücken zusammengehalten werden. Damit zeigen die Forscher zum ersten Mal eine Dreierkette aus gleichgeladenen Ionen, die sich im Grunde abstoßen.

Die erfolgreiche Zusammenarbeit zwischen den Professoren Mark Johnson, einem weltbekannten Cluster-Forscher, und Ralf Ludwig aus der Physikalischen Chemie der...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2018

16.10.2018 | Veranstaltungen

Künstliche Intelligenz in der Medizin

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Fehlerzustände frühzeitig erkennen dank innovativer akustischer Verfahren zur Qualitätsprüfung

18.10.2018 | Verfahrenstechnologie

Pflanzen stoßen das Treibhausgas Lachgas in klimarelevanten Mengen aus

18.10.2018 | Biowissenschaften Chemie

Sinneswahrnehmung ist keine Einbahnstraße

17.10.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics