Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Natur erfindet das Rad nur einmal

07.02.2005


Gene und Proteine, die Nerven wachsen lassen, steuern auch Blut- und Lymphgefäße, berichten Forscher des Max-Planck-Instituts für Neurobiologie in Martinsried


Ephrine regulieren die Entwicklung der Lymphgefäße in der Haut. Die Abbildung zeigt ein normales Lymphgefässsystem an Tag1 nach der Geburt (obere Bildreihe) und am Tag 3 nach der Geburt (Bildreihe unten). Die Bilder in der linken Spalte (oben Tag 1, unten Tag 3 nach der Geburt) zeigen Lymphgefäße einer sich normal entwickelnden Maus. In der rechten Spalte (oben Tag 1, unten Tag 3 nach der Geburt) sind Aufnahmen der Lymphgefäße der ephrinB2 Mutante zu sehen. Das Fehlen von kapillaren Aussprossungen in der ephrinB2-Mutante an Tag 3 sind im rechten unteren Foto klar zu erkennen. Bild: Max-Planck-Institut für Neurobiologie



Während der Entwicklung eines Lebewesens bilden sich aus einzelnen Zellen spezialisierte Gewebe und Systeme. Dazu müssen die Zellen Informationen erhalten, wo sie im Körper später ihre Funktionen ausüben und mit welchen Zellen sie ein gemeinsames Netzwerk oder Gefäßsystem bilden sollen. Das erfolgt über ein ausgeklügeltes Signalsystem, dessen Funktionen man bisher hauptsächlich im Nervensystem studiert hatte. Inzwischen mehren sich Hinweise, dass die Gene und Proteine, die das Verkabeln von Nervenzellen regulieren, auch Blutgefäße dirigieren. Einen weiteren Baustein dazu liefern jetzt Wissenschaftler des Max-Planck-Instituts für Neurobiologie: Sie zeigen erstmals, dass die Entwicklung des Lymphgefäßsystems verschiedene Phasen durchläuft und seine Verzweigung nach ähnlichen Prinzipien erfolgt wie die Verästelung feiner Nervenfortsätze. Die Natur setzt offensichtlich gut funktionierende Signalsysteme mehrfach ein. Das Signal-Protein EphrinB2, das maßgeblich an der Lenkung von Nervenfortsätzen beteiligt ist, ist auch essentiell für die Ausbildung eines funktionierenden Lymphgefäßsystems (Genes & Development, 1. Februar 2005).



Zellen, die am Aufbau von Blutgefäßen und Nerven-Netzwerken beteiligt sind, müssen miteinander in Kontakt treten, um sich zu vernetzen oder ihren Weg zu finden. Dazu bilden die Zellen während ihres Wachstums unterschiedliche Fortsätze aus, die durch verschiedene Faktoren gesteuert werden. Nervenzellen bilden so genannte Axone, an deren Spitze sich ein Wachstumskegel befindet, der die Umgebung nach Signalen ertastet. Vom Wachstumskegel gehen fingerförmige Fortsätze (Filopodien) aus, die mit Empfänger-Proteinen für chemische Signale besetzt sind.

Die Max-Planck-Wissenschaftler um Rüdiger Klein haben sich auf die "Sender-Proteine" (Ephrine) und die "Empfänger-Proteine" (Eph-Rezeptoren) spezialisiert. Über eine Verankerung in der Zellmembran sitzen diese Proteine fest auf der Oberfläche oder in der Zellmembran der Zellen, die sich begegnen. Jeweils ein Ephrin-Ligand der "Weg-suchenden" Zelle kann mit einem Eph-Rezeptor einer "Weg-weisenden" Zelle binden oder umgekehrt. Sie bilden einen so genannten Ephrin/Eph-Komplex, eine feste Verbindung, über die das Rezeptorprotein - wie eine Antenne - ein Signal in das Innere jener Zelle weitergibt, auf der es sitzt. Dadurch werden zelluläre Prozesse ausgelöst, die schließlich dazu führen, dass sich die Zellen oder ihre Fortsätze entweder abstoßen oder anziehen. Abstoßung und Anziehung sind also Voraussetzung dafür, dass die richtigen Zellen zueinander finden.

Bereits in den späten 1990er Jahren hatten Wissenschaftler um Rüdiger Klein, damals noch am European Molecular Biology Laboratory (EMBL) in Heidelberg, erste Gemeinsamkeiten zwischen der Lenkung von Nervenfortsätzen und der Blutgefäßentwicklung entdeckt. Zeitgleich mit David Anderson’s Arbeitsgruppe am Caltech in Kalifornien zeigte Rüdiger Klein’s Team, dass EphrinB2 von Arterien gebildet wird, nicht aber von Venen, und dass EphrinB2 essentiell für die Ausbildung eines funktionierenden Blutgefäßsystems ist. Während der Entwicklung des embryonalen Blutgefäßsystems kommt es zu umfangreichen Umgestaltungen - neue Kapillaren sprossen ins Gewebe aus, andere werden wiederum abgebaut. EphrinB2 reguliert die Neubildung und das Wachstum von Kapillaren, ähnlich wie Nervenfortsätze im Gehirn.

In ihrer neuesten Arbeit haben Taija Mäkinen, George Wilkinson und Rüdiger Klein nun entdeckt, dass Lymphgefäße gleichartigen Umgestaltungsprozessen unterworfen sind, wie man sie bereits bei Blutgefäßen kennt. Einzelne Zellen, die die Gefäße auskleiden, so genannte Endothelzellen, lösen sich aus dem Zellverband und bilden - ähnlich wie die neuronalen Wachstumskegel bei Axonen - lange Filopodien, mit denen sie offensichtlich chemische Signale aus der Umgebung ertasten. Die Filopodien-tragenden Zellen sind die treibende Kraft, neue Lymphkapillaren zu bilden. Ephrine und Eph-Rezeptoren sind auch an der Umgestaltung von Lymphgefäßen im Hautgewebe von Mäusen beteiligt und kontrollieren dadurch den Transport der Lymphe zurück in den Blutkreislauf.

Rüdiger Kleins Team hat in Zusammenarbeit mit Wissenschaftlern aus Finnland, USA, Großbritannien und der Schweiz die Entwicklung von Mäusen untersucht, bei denen das Gen für die korrekte Struktur von EphrinB2 verändert wurde (knock-in Mäuse). Wurde eine fehlerhafte Form von EphrinB2 gebildet, zeigten die Mäuse ein stark verringertes Lymphkapillarsystem der Haut, Aufblähungen der großen Lymphgefäße mit Fehlbildungen in den Gefäßklappen und Rückstau von Lymphe im Brustkorb. Die Lebensfähigkeit dieser Mäuse war dadurch stark eingeschränkt. Da die Forscher verschiedene knock-in Mäuse untersucht hatten, konnten sie auch feststellen, welche Merkmale des Ephrin-Proteins unbedingt vorhanden sein mussten, damit die Signalwege und damit auch die Gefäße korrekt ausgebildet werden.

Die Entdeckung, dass auch das Lymphgefäßsystem durch Ephrine umfangreichen Umgestaltungen unterworfen wird, ist ein weiteres Beispiel, wie Blut- und Lymphgefäßsysteme Mechanismen kopiert haben, die sich bereits erfolgreich bei der Vernetzung von Nervenzellen entwickelt hatten. Mit anderen Worten: Die Natur setzt bewährte Systeme mehrfach ein und hat nicht für jeden Entwicklungsbereich das Rad neu erfunden.

Originalveröffentlichung:

Taija Mäkinen, Ralf H. Adams, John Bailey, Qiang Lu, Andrew Ziemiecki, Kari Alitalo, Rüdiger Klein, and George A. Wilkinson
PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature
Genes & Development. 2005 19: 397-410

Dr. Andreas Trepte | idw
Weitere Informationen:
http://www.neuro.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues aus der Schaltzentrale
18.07.2018 | Karl-Franzens-Universität Graz

nachricht Chemische Waffe durch laterale Gen-Übertragung schützt Wollkäfer gegen schädliche Pilze
18.07.2018 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vernetzte Beleuchtung: Weg mit dem blinden Fleck

18.07.2018 | Energie und Elektrotechnik

BIAS erhält Bremens größten 3D-Drucker für metallische Luffahrtkomponenten

18.07.2018 | Verfahrenstechnologie

Verminderte Hirnleistung bei schwachem Herz

18.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics