Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Trennung von Nervenfasern wichtig für Muskelsteuerung

11.04.2008
Forscher am European Neuroscience Institute Göttingen finden Details zur Spezialisierung von Nervenfasern, die Bewegungsabläufe koordinieren. Die Ergebnisse erscheinen am 11. April 2008 in der Printausgabe der Zeitschrift "Science".

Gehen, Schwimmen oder Klavierspielen - jede Art von Bewegungsablauf ist nur möglich, wenn die Muskeln die richtigen Impulse ('motorische' Befehle) bekommen. Hoch spezialisierte Nervenbahnen steuern die Bewegung, indem sie die Muskulatur direkt mit dem Nervensystem verbinden.

Damit eine Bewegung wie "Laufen" koordiniert gesteuert ablaufen kann, müssen motorische "Befehle" und sensorische "Eindrücke" (Rückmeldung, in welchem Zustand der Muskel sich befindet) innerhalb der Nervenbahnen streng getrennt erfolgen. Die Göttinger DFG Emmy Noether Forschergruppe um Dr. Till Marquardt, Leiter der Forschungsgruppe Entwicklungsneurobiologie am European Neuroscience Institute (ENI-G) Göttingen hat jetzt herausgefunden, wie es zu der getrennten Ausbildung von motorischen und sensorischen Nervenfasern kommt. Die Arbeiten erfolgten in Zusammenarbeit mit den Arbeitsgruppen von Prof. Sam Pfaff und Prof. Greg Lemke am Salk Institute, San Diego (USA). Die Ergebnisse wurden am 11. April 2008 in der Print-Ausgabe des renommierten Wissenschaftsmagazins "Science" veröffentlicht.

Originalveröffentlichung: Gallarda, B., Bonanomi, D., Müller, D., Brown, A., Alaynick, W.A., Lemke, G., Pfaff, S.L. and Marquardt, T. Segregation of axial sensory and motor pathways through heterotypic trans-axonal signaling. Science 321 (April 11) 2008.

Die neuen Kenntnisse aus der Grundlagenforschung über die Signalmechanismen zwischen motorischen und sensorischen Nervenfasern könnten für die Entwicklung von Therapien bei Verletzungen von Nervenbahnen von Bedeutung sein. So genannte "Motorfasern" leiten die Nervenimpulse an die Muskulatur. "Sensorische Fasern" sind dafür zuständig, Sinnesinformationen wie Schmerz oder Temperatur von Muskulatur, Bindegewebe und Haut an das zentrale Nervensystem zu leiten. Wie wichtig dieses ausgeklügeltes Zusammenspiel ist, zeigt sich, wenn eine Verletzung die Nervenbahnen vermischt. Die Folgen sind chronische Schmerzen und auch die Fähigkeit sich zu bewegen ist schwer eingeschränkt.

Motorische und sensorische Fasern wachsen während der Embryonalentwicklung zunächst gemeinsam aus. Wie kommt es dann zur Trennung der verschiedenen Nervenfasertypen und der so wichtigen Spezialisierung? "Wir haben zunächst das Wachstum von Nerven in der Kulturschale untersucht", sagt Dr. Till Marquardt. Ein neu entwickeltes Verfahren ermöglichte es den Forschern, motorische und sensorische Fasern voneinander zu unterscheiden und ihr Wachstum unter dem Mikroskop zu verfolgen. Dabei konnten die Forscher beobachten, wie sich die isolierten Nervenfasern spontan in streng getrennte Nervenbahnen verschiedener Typen aufteilten. Dieses Verhalten hatten sie vorher genau so in Versuchstieren beobachtet.

"Die Trennung in sensorische und in motorische Fasertypen beruht auf einer gegenseitigen Abstoßung", sagt Till Marquardt. Vermittelt wird die gegenseitige Abstoßung durch das Zusammenspiel zweier Eiweißmoleküle, die jeweils auf der Oberfläche der motorischen und sensorischen Fasern liegen. Das Eiweißmolekül auf den sensorischen Fasern (ephrin-A) funktioniert dabei als Abstoßungs-Signal. Es wirkt wiederum direkt auf spezifische Eiweißmoleküle (EphA-Rezeptoren) auf den motorischen Fasern.

Der Gegentest brachte den Forschern weitere Erkenntnisse: Das gezielte Entfernen der EphA-Rezeptoren führte zu einem 'Kurzschluss' im Nervenschaltkreis: Motorfa-sern wuchsen nicht wie normalerweise zur Muskulatur. Stattdessen wuchsen sie in die sensorischen Bahnen und sendeten ihre Nervenimpulse somit an die falsche Stelle. "Die aktive gegenseitige Abstoßung von motorischen und sensorischen Nervenfasern während ihres Wachstums zur Muskulatur ist also von essenzieller Bedeutung für den Aufbau der Nervenschaltkreise, die Bewegungsabläufe steuern", sagt Till Marquardt.

ENI Arbeitsgruppe Entwicklungsneurobiologie. Koordinierte Bewegungen erfordern die präzise Verschaltung von Motoneuronen und sensorischen Neuronen mit der Skelettmuskulatur. Ziel der Forschungsgruppe ist es, zu verstehen, wie die Verbindungen zwischen motorischen und sensorischen Neuronen im Verlauf der Embryonalentwicklung ausgebildet und schließlich zu funktionsfähigen Schaltkreisen verknüpft werden. Die Arbeiten der Forschergruppe werden von der Deutschen Forschungsgemeinschaft (DFG) im Rahmen des Emmy Noether Programms gefördert.

Das European Neurosciences Institute Göttingen (ENI-G) besteht seit Juni 2003 und beherbergt derzeit sechs Forschungsgruppen. Sie werden durch die Universitätsmedizin Göttingen, Georg-August-Universität, und die Max-Planck-Gesellschaft gefördert. Ziel ist die Förderung talentierter Nachwuchswissenchaftler auf ihrem Weg zu eigenständiger Forschung.

WEITERE INFORMATIONEN:
European Neuroscience Institute Göttingen (ENI-G), Grisebachstr. 5, 37077 Göttingen
Dr. Till Marquardt, Leiter der Arbeitsgruppe Entwicklungsneurobiologie,
Telefon: 0551 39-13400, tmarqua@gwdg.de,

Stefan Weller | idw
Weitere Informationen:
http://wwwuser.gwdg.de/~tmarqua/

Weitere Berichte zu: Eiweißmolekül Faser Nervenbahn Nervenfaser

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sinneswahrnehmung ist keine Einbahnstraße
17.10.2018 | Eberhard Karls Universität Tübingen

nachricht Neuer ALS-Bluttest: Hilfe bei der Differenzialdiagnose und Hinweise auf Krankheitsverlauf
17.10.2018 | Universität Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Im Focus: Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen

Die Forschungskooperation zwischen der Universität Yale und der Universität Rostock hat neue wissenschaftliche Ergebnisse hervorgebracht. In der renommierten Zeitschrift „Angewandte Chemie“ berichten die Wissenschaftler über eine Dreierkette aus Ionen gleicher Ladung, die durch sogenannte Wasserstoffbrücken zusammengehalten werden. Damit zeigen die Forscher zum ersten Mal eine Dreierkette aus gleichgeladenen Ionen, die sich im Grunde abstoßen.

Die erfolgreiche Zusammenarbeit zwischen den Professoren Mark Johnson, einem weltbekannten Cluster-Forscher, und Ralf Ludwig aus der Physikalischen Chemie der...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2018

16.10.2018 | Veranstaltungen

Künstliche Intelligenz in der Medizin

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Sinneswahrnehmung ist keine Einbahnstraße

17.10.2018 | Biowissenschaften Chemie

Space Farming dank Pflanzenhormon Strigolacton

17.10.2018 | Agrar- Forstwissenschaften

Oberflächen mit flexiblen und handlichen Plasmaquellen aktivieren

17.10.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics