Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Oxidation: Der Dreh mit dem Spin

30.01.2008
Quantenmechanik bestimmt Reaktion von Sauerstoff mit Metallen

Reaktionen mit Sauerstoff gehören zu den wichtigsten chemischen Prozessen. Nützlich sind sie, wenn Nahrung in Körperzellen oder Erdgas in Kraftwerken kontrolliert zu Kohlendioxid verbrannt wird, um Energie zu gewinnen. Ökologisch problematisch kann es werden, wenn sich mit Luftsauerstoff Ozon oder Stickoxide bilden. Besondere wirtschaftliche und technische Bedeutung hat die sauerstoffabhängige Korrosion von Eisen, der Rost. Obwohl sie so verbreitet ist, weiß man über die atomaren Abläufe bei der Oxidation mit Sauerstoff recht wenig. Licht ins Dunkel bringt nun eine Arbeit von Forschern des Karlsruher Instituts für Technologie (KIT), die in der Fachzeitschrift "Science" erschienen ist.

Die Veröffentlichung der Chemiker Professor Hansgeorg Schnöckel und Dr. Ralf Burgert zeigt, dass der Spin, also der Drehimpuls der Elektronen, die für die Bindung zwischen den Atomen verantwortlich sind, bei der Korrosion von Metallen entscheidend ist (Science, 319 (5862), 438). Als Modellsystem stellten die Wissenschaftler Nanopartikel aus wenigen Aluminiumatomen her. Für die Untersuchung dieser als Cluster bezeichneten Strukturen nutzten sie die Fourier-Transform-Massenspektrometrie, ein Verfahren, das bisher vor allem bei der Analyse von Proteinen eingesetzt wurde.

In Zusammenarbeit mit amerikanischen Wissenschaftlern aus Baltimore, Lake Charles und Richmond sowie Forschern an der Universität Konstanz konnten die Chemiker nachweisen, dass der Spin bestimmt, ob es zu einer spontanen Oxidation kommt oder nicht. Entscheidend ist, dass die Spins bei beiden Reaktionspartnern zueinander passen, denn nach den "Spin-Auswahlregeln" sind nur bestimmte Kombinationen möglich.

... mehr zu:
»Elektron »KIT »Oxidation
"Eigentlich müsste um uns herum alles brennen, denn unsere Luft enthält 20 Prozent Sauerstoff", erläutert Schnöckel, der am Centrum für Funktionelle Nanostrukturen des KIT arbeitet. "Zum Glück existiert Sauerstoff in unterschiedlichen quantenmechanischen Formen. Aufgrund der Elektronenzustände hat er als Triplett-Sauerstoff, also in seiner 'Normalform', die niedrigste Energie und magnetische Eigenschaften. Nur durch die Zufuhr von Energie, etwa durch UV-Strahlung in den oberen Schichten der Atmosphäre oder durch chemische Reaktionen im Labor, entsteht Singulett-Sauerstoff. Er ist nicht magnetisch und aufgrund seiner höheren Energie sehr instabil." Schnöckels Team konnte nachweisen, dass nur diese Form spontan, ohne Energiezufuhr, einen hoch stabilen Cluster aus 13 Aluminiumatomen (Al13) oxidiert. Hierfür fingen sie negativ geladene Al13-Cluster im Magnetfeld eines Massenspektrometers auf einer Kreisbahn ein. Durch elektrische Entladungen produzierten sie Singulett-Sauerstoff, der im Hochvakuum des Geräts über längere Zeit stabil ist. Da die Reaktionspartner nur in geringer Konzentration vorliegen, trifft ein Molekül nur etwa alle zehn Sekunden auf einen Aluminium-Cluster - genug Zeit, um den schnellen ersten Reaktionsschritt der Oxidation zu messen. Im gleichen Experiment reagierte ein Cluster mit 14 Aluminiumatomen, der selbst wie ein winziger Magnet wirkt, nicht mit Singulett-, sondern mit Triplett-Sauerstoff.

Bisher hat das Team ausschließlich kleine Aluminium-Cluster untersucht. Ihre regelmäßige Struktur mache sie zu idealen Versuchsobjekten, so Schnöckel. "Vereinfacht gesagt verhalten sich Al13-Cluster wie Aluminium-Metall." Seine Untersuchungen und Methoden können aber auch auf andere Reaktionen mit Sauerstoff, wie sie etwa bei Verbrennungsvorgängen oder bei der Zersetzung von Kunststoffen auftreten, übertragen werden, um sie besser zu verstehen und kontrollieren zu können.

Ein negativ geladener Al13-Cluster mit seiner stabilen Elektronenstruktur reagiert nur langsam mit einem Sauerstoff-Molekül im Triplett-Zustand (rot). Das Molekül verhält sich aufgrund der Drehrichtung seiner Elektronen (Spin) wie ein kleiner Magnet und ist nur eingeschränkt reaktionsfähig.

Der Elektronenspin beim nicht-magnetischen Singulett-Sauerstoffmolekül (rot) erlaubt eine schnelle Bindung an das negativ geladene Al13-Ion. In einem Zwischenschritt verformt sich der Cluster, der am Ende der Oxidationsreaktion in zwei Moleküle Aluminiumoxid und ein instabiles Al9-Ion zerfällt.

Eine Million Euro kostet das von der Deutschen Forschungsgemeinschaft geförderte Massenspektrometer, mit dem die Karlsruher Chemiker erforschen, wie Nanopartikel aus Aluminium mit Sauerstoff reagieren.

Literatur:
Spin Conservation Accounts for Aluminum Cluster Anion Reactivity Pattern with O2. R. Burgert et al., Science 319 (5862), 438-442 (2008).

Im Karlsruher Institut für Technologie (KIT) gehen die Universität Karlsruhe und das Forschungszentrum Karlsruhe zusammen. Gemeinsam arbeiten hier 7500 Beschäftigte mit einem jährlichen Budget von 600 Millionen Euro.

Mit KIT entsteht eine Institution international herausragender Forschung und Lehre in den Natur- und Ingenieurwissenschaften. KIT soll Attraktionspunkt für die besten Köpfe aus der ganzen Welt werden, neue Maßstäbe in Lehre und Nachwuchsförderung setzen und das führende europäische Zentrum in der Energieforschung bilden. Im Bereich der Nanowissenschaften will KIT eine weltweit führende Rolle einnehmen. Ziel von KIT ist es, einer der wichtigsten Kooperationspartner für die Wirtschaft zu sein.

Oxidation

Umgangssprachlich versteht man unter Oxidation eine Reaktion mit Sauerstoff. Der Chemiker bezeichnet damit jede Reaktion, bei der ein Stoff Elektronen an einen Elektronenakzeptor abgibt, der dabei reduziert wird. Da beide Schritte nicht unabhängig voneinander ablaufen, spricht man von Redox-Reaktionen.

Es gibt also Elemente/Verbindungen, die bevorzugt Elektronen abgeben (z. B. Metalle) und solche, die bevorzugt Elektronen aufnehmen (z. B. Sauerstoff, Chlor); letztere nennt man Oxidationsmittel, erstere Reduktionsmittel.

Spin-Auswahlregeln, Spinerhaltungssatz

Der Gesamtspin (Elektronendrehimpuls) der Ausgangsverbindungen muss für spontane Reaktionen gleich dem Gesamtspin des Reaktionsproduktes sein. Dieser Spinerhaltungssatz wird für Reaktionen mit Triplett-Sauerstoff verletzt, weil die meisten Produkte, wie etwa CO2 bei der Verbrennung von Kohlenstoff, keinen Spin besitzen, d. h. der Gesamtdrehimpuls ist Null.

Massenspektrometer

Mit einem Massenspektrometer kann man das Verhältnis zwischen Masse und Ladung von Teilchen messen. Ionisierte (elektrisch geladene) Atome und Verbindungen werden beschleunigt und einem Magnetfeld ausgesetzt. Je nach ihrer Masse werden sie dabei mehr oder weniger stark aus ihrer Flugbahn abgelenkt. Ist die Ladung bekannt, lässt sich aus der Ablenkung die Masse des Teilchens berechnen.

Weiterer Kontakt:
DFG-Centrum für Funktionelle Nanostrukturen (CFN)
Dr. Gerd König
Wolfgang-Gaede-Str. 1
76131 Karlsruhe
Tel.: +49 721 608-3409
Fax: +49 721 608-8496
gerd.koenig@cfn.uni-karlsruhe.de

Dr. Elisabeth Zuber-Knost | idw
Weitere Informationen:
http://www.cfn.uni-karlsruhe.de
http://www.kit.edu

Weitere Berichte zu: Elektron KIT Oxidation

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Goldkugel im goldenen Käfig
21.03.2019 | Gesellschaft Deutscher Chemiker e.V.

nachricht Wichtiger Mechanismus der Antigenpräsentation in Wächterzellen des Immunsystems enträtselt
21.03.2019 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetische Mikroboote

Nano- und Mikrotechnologie sind nicht nur für medizinische Anwendungen wie in der Wirkstofffreisetzung vielversprechende Kandidaten, sondern auch für die Entwicklung kleiner Roboter oder flexibler integrierter Sensoren. Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) haben mit einer neu entwickelten Methode magnetische Mikropartikel hergestellt, die den Weg für den Bau von Mikromotoren oder die Zielführung von Medikamenten im menschlichen Körper, wie z.B. zu einem Tumor, ebnen könnten. Die Herstellung solcher Strukturen sowie deren Bewegung kann einfach durch Magnetfelder gesteuert werden und findet daher Anwendung in einer Vielzahl von Bereichen.

Die magnetischen Eigenschaften eines Materials bestimmen, wie dieses Material auf das Vorhandensein eines Magnetfeldes reagiert. Eisenoxid ist der...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Goldkugel im goldenen Käfig

„Goldenes Fulleren“: Liganden-geschützter Nanocluster aus 32 Goldatomen

Forschern ist es gelungen, eine winzige Struktur aus 32 Goldatomen zu synthetisieren. Dieser Nanocluster hat einen Kern aus 12 Goldatomen, der von einer Schale...

Im Focus: Wichtiger Mechanismus der Antigenpräsentation in Wächterzellen des Immunsystems enträtselt

TWINCORE-Forscher entschlüsseln, wie der Transport von Antigenfragmenten auf die Oberfläche von Immunzellen des Menschen reguliert wird

Dendritische Zellen sind die Wächter unserer Immunabwehr. Sie lauern fremden Eindringlingen auf, schlucken sie, zerlegen sie in Bruchstücke und präsentieren...

Im Focus: Selbstheilender Lack aus Maisstärke lässt kleine Kratzer durch Wärme verschwinden

Ein neuer Lack aus Maisstärke ist wegen der besonderen Anordnung seiner Moleküle in der Lage, durch Wärme kleine Kratzer von selbst zu reparieren: Die Vernetzung über ringförmige Moleküle macht das Material beweglich, sodass es die Kratzer ausgleicht und diese wieder verschwinden.

Oberflächliche Mikrokratzer in der Autokarosserie oder auf anderen Hochglanzoberflächen sind harmlos, aber ärgerlich. Gerade im Luxussegment zeichnen sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größte nationale Tagung 2019 für Nuklearmedizin in Bremen

21.03.2019 | Veranstaltungen

6. Magdeburger Brand- und Explosionsschutztage vom 25. bis 26.3. 2019

21.03.2019 | Veranstaltungen

Teilchenphysik trifft Didaktik und künstliche Intelligenz in Aachen

20.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Magnetische Mikroboote

21.03.2019 | Physik Astronomie

Protein BRCA1 als Stress-Coach

21.03.2019 | Biowissenschaften Chemie

Möglicher Ur-Stoffwechsel in Bakterien entdeckt

21.03.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics