Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit zwei neuen Virtuellen-Instituten verstärkt das HZB die Zusammenarbeit mit den Universitäten

04.07.2012
Dünnschichtsolarzellen und topologische Quantenphasen – ein Kernthema auf dem Weg zum Quantencomputer - werden nun im Verbund erforscht.

Am Helmholtz-Zentrum Berlin (HZB) fördert die Helmholtz-Gemeinschaft zwei neue „Helmholtz-Virtuelle-Institute“. Im Verbund forschen Wissenschaftlerinnen und Wissenschaftler mit Partnern aus Universitäten und anderen renommierten Forschungsinstituten aus dem In- und Ausland an gemeinsamen Themen.

Das HZB und seine Partner sind mit ihren Anträgen zur gemeinsamen Weiterentwicklung von Dünnschichtsolarzellen für die Photovoltaik und die Suche nach so genannten topologischen Quantenphasen erfolgreich gewesen. Letztere werden als bedeutsam für die Entwicklung so genannter Quantencomputer eingeschätzt.

Die Virtuellen-Institute werden mit jährlich bis zu 600.000 Euro über drei bis fünf Jahre aus dem Impuls- und Vernetzungsfonds der Helmholtz-Gemeinschaft gefördert. Dazu kommen Eigenmittel der Zentren, so dass die Forschungsvorhaben insgesamt mit bis zu 900.000 Euro jährlich finanziert werden können.

Mikrostruktur-Kontrolle für Dünnschicht-Solarzellen
Photovoltaische Bauelemente, die zur direkten Umwandlung von Sonnenenergie in Elektrizität betrieben werden, sind zu einer der wichtigsten sauberen Energiequellen geworden. Die Optimierung von Dünnschichtsolarzellen für solche Anwendungen beruhte bislang vor allem auf Ausprobieren – „trial and error“. Ein exaktes Verständnis darüber, wie Wachstumsprozesse, die Mikrostruktur (z. B. Versetzungen, Korngrenzen und Eigenspannung) der polykristallinen Absorberschicht und die elektrischen und opto-elektronischen Eigenschaften der Solarzelle zusammenwirken, würden sich sehr positiv auf die Weiterentwicklung dieser Bauelemente und die Erzielung höherer Wirkungsgrade auswirken. Dieser Thematik widmet sich das Virtuelle-Institut „Microstructure control for thin-film solar cells”. In ihm wollen Wissenschaftlerinnen und Wissenschaftler des HZB und seiner Partner die komplexe Mikrostruktur polykristalliner Absorberschichten in Dünnschichtsolarzellen untersuchen. Dabei wollen sie die Ausbildung der Mikrostruktur während des Wachstums von dünnen Schichten verstehen und kontrollieren lernen.
„Mit dem theoretischen Verständnis der Zusammenhänge, gekoppelt mit Simulationen und Modellierung, wollen wir hocheffiziente Solarzellen realisieren. Dabei arbeiten wir an zwei technologisch gut etablierten, polykristallinen Systemen: Silizium sowie Kupfer-Indium-Gallium-Selenid (Cu(In,Ga)Se2)“, sagt Sprecherin Susan Schorr, Professorin an der Freien Universität Berlin und Leiterin der Abteilung Kristallographie am HZB. Der im Virtuellen Institut entwickelte Forschungsansatz und die erarbeiteten Analysestrategien werden auf weitere komplexe Materialsysteme übertragbar sein. Partner des HZB in diesem Helmholtz-Virtuellen-Institut sind die Freie Universität Berlin, die Technische Universität Berlin, das MATHEON (DFG Forschungszentrum Mathematik für Schlüsseltechnologien) und die Technische Universität Darmstadt. Diese Partner werden ergänzt durch assoziierte Gruppen des Max-Planck-Institutes für Intelligente Systeme, des Max-Planck Instituts für Eisenforschung, der University of Oxford, der ETH Zürich, und von SuperSTEM Daresbury (EPSRC National Facility for Aberration Corrected STEM).

Forschung für Quantencomputer
Im zweiten vom HZB koordinierten Helmholtz-Virtuellen-Institut geht es um das kollektive Verhalten und neue Phasen der Materie. Der unglaubliche Reichtum von metallischen, magnetischen und supraleitenden Verbindungen bringt seit Jahrzehnten unerwartete Ergebnisse in Grundlagenforschung und Materialwissenschaften hervor. Dabei findet zurzeit ein revolutionärer Umbruch bei der Suche nach neuen Phasen statt: Im Fokus stehen so genannte topologische Quantenphasen. Ihnen widmet sich das Virtuelle Institut mit der Bezeichnung „New states of matter and their excitations“. Verschiedene Erkenntnisse in diesem Feld haben in jüngster Zeit Wissenschaftler mit unterschiedlichem Hintergrund zusammengebracht. Die bisherigen Erkenntnisse haben – teilweise basierend auf der Aussicht, topologische Quantencomputer zu realisieren – zu einer substantiellen finanziellen Förderung in Europa, Asien und Nordamerika geführt. In Deutschland bestehen derzeit keine vergleichbaren Aktivitäten. Das Helmholtz-Virtuelle-Institut am HZB schafft hier Abhilfe. Es zielt darauf ab, führende Wissenschaftler zusammenzubringen, damit sie gemeinsam topologische Quantenphasen erforschen. Beteiligt an diesem Virtuellen-Institut sind die Freie Universität Berlin, das Max-Planck-Institut für Physik komplexer Systeme in Dresden, die Technische Universität Dresden, die Universität Göttingen und die Technische Universität Dortmund.

Weitere Informationen:
Prof. Susan Schorr
Abteilung Kristallographie
Tel.: +49 (0)30-8062-42317
susan.schorr@helmholtzberlin.de

Prof. Alan Tennant
Institut Komplexe Magnetische Materialien
Tel.: +49 (0)30-8062-42751
tennant@helmholtz-berlin.de

Pressestelle
Dr. Ina Helms
Tel.: +49 (0)30-8062-42034
Fax: +49 (0)30-8062-42998
ina.helms@helmholtz-berlin.de

Dr. Ina Helms | Helmholtz-Zentrum
Weitere Informationen:
http://www.helmholtz-berlin.de

Weitere Nachrichten aus der Kategorie Bildung Wissenschaft:

nachricht Neue Lernwelt durch VR-Technologie
16.04.2019 | Universität Witten/Herdecke

nachricht Studie zu Perspektiven der beruflichen Bildung 2040 – Flexibilität schaffen
15.04.2019 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Bildung Wissenschaft >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Geometrie eines Elektrons erstmals bestimmt

Physiker der Universität Basel können erstmals zeigen, wie ein einzelnes Elektron in einem künstlichen Atom aussieht. Mithilfe einer neu entwickelten Methode sind sie in der Lage, die Aufenthaltswahrscheinlichkeit eines Elektrons im Raum darzustellen. Dadurch lässt sich die Kontrolle von Elektronenspins verbessern, die als kleinste Informationseinheit eines zukünftigen Quantencomputers dienen könnten. Die Experimente wurden in «Physical Review Letters» und die Theorie dazu in «Physical Review B» veröffentlicht.

Der Spin eines Elektrons ist ein vielversprechender Kandidat, um als kleinste Informationseinheit (Qubit) eines Quantencomputers genutzt zu werden. Diesen Spin...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Optische Superlinsen aus Gold

Oldenburger Forscher entwickeln neues optisches Mikroskop mit extrem hoher Auflösung

Eine kegelförmige Spitze aus Gold bildet das Kernstück eines neuen, extrem leistungsfähigen optischen Mikroskops, das Oldenburger Wissenschaftler in der...

Im Focus: Impfen über die Haut – Gezielter Wirkstofftransport mit Hilfe von Nanopartikeln

Forschenden am Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam ist es gelungen Nanopartikel so weiterzuentwickeln, dass sie von speziellen Zellen der menschlichen Haut aufgenommen werden können. Diese sogenannten Langerhans Zellen koordinieren die Immunantwort und alarmieren den Körper, wenn Erreger oder Tumore im Organismus auftreten. Mit dieser neuen Technologieplattform könnten nun gezielt Wirkstoffe, zum Beispiel Impfstoffe oder Medikamente, in Langerhans Zellen eingebracht werden, um eine kontrollierte Immunantwort zu erreichen.

Die Haut ist ein besonders attraktiver Ort für die Applikation vieler Medikamente, die das Immunsystem beeinflussen. Die geeigneten Zielzellen liegen in der...

Im Focus: Chaperone halten das Tumorsuppressor-Protein p53 in Schach: Komplexer Regelkreis schützt vor Krebs

Über Leben und Tod einer Zelle entscheidet das Anti-Tumor-Protein p53: Erkennt es Schäden im Erbgut, treibt es die Zelle in den Selbstmord. Eine neue Forschungsarbeit an der Technischen Universität München (TUM) zeigt, dass diese körpereigene Krebsabwehr nur funktioniert, wenn bestimmte Proteine, die Chaperone, dies zulassen.

Eine Krebstherapie ohne Nebenwirkungen, die gezielt nur Tumorzellen angreift – noch können Ärzte und Patienten davon nur träumen. Dabei hat die Natur ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kindermediziner tagen in Leipzig

22.05.2019 | Veranstaltungen

Jubiläumskongress zur Radiologie der Zukunft

22.05.2019 | Veranstaltungen

Wissensparcour bei der time4you gestartet

22.05.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Geometrie eines Elektrons erstmals bestimmt

23.05.2019 | Physik Astronomie

Galaxien als „kosmische Kochtöpfe“

23.05.2019 | Physik Astronomie

Auflösen von Proteinstau am Eingang von Mitochondrien

23.05.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics