Bauindustrie 4.0: Smarter Straßenbau mit intelligenten Baumaschinen

Den Bauprozess können vernetzte Straßenbaumaschinen mit intelligenter Steuerung optimieren | Bildquelle: CC0 Public Domain / Pixabay

Schneller zum besseren Fahrbahnbelag: Vernetzte Straßenbaumaschinen mit intelligenter Steuerung optimieren den Bauprozess. An dieser Vision haben Wirtschaftsinformatiker der Universität Hohenheim und ihre Kooperationspartner drei Jahre im Projekt SmartSite gearbeitet.

Jetzt testen sie es erstmals auf einer realen Baustelle. Die abgestimmte Logistikkette und ein Assistenzsystem für Walzenfahrer verkürzen die Bauzeit – und sorgen dafür, dass der Verkehr anschließend lange ungehindert fließen kann.

Die Landesstraße L1205 im schwäbischen Filderstadt braucht einen neuen Straßenbelag: Eine ganz normale Baustelle – die nun als wissenschaftliches Testobjekt dient. Drei Jahre haben die Wirtschaftsinformatiker der Universität Hohenheim gemeinsam mit Unternehmenspartnern aus der Bauindustrie im Projekt SmartSite an einem neuen Verfahren zur Vernetzung von Maschinen, Baustellenumgebung und Leitsystemen gearbeitet. Jetzt wollen sie es zum ersten Mal in der Praxis einsetzen.

„Schlechte Vernetzung ist eine häufige Ursache für Verzögerungen auf Baustellen“, erklärt Prof. Dr. Stefan Kirn, wissenschaftlicher Leiter des Projektes an der Universität Hohenheim. „Der Asphalt darf auf der Strecke vom Mischwerk bis zur Baustelle nicht abkühlen, da er sonst nicht mehr eingebaut werden kann.“ Gleichzeitig müsse der Asphaltfertiger kontinuierlich mit Material versorgt werden – eine logistische Herausforderung.

Bessere Steuerung der Logistik auf Asphaltbaustellen

„Derzeit kennt der verantwortliche Einbaumeister auf der Baustelle oft nicht den genauen Ankunftszeitpunkt eines Lastwagens“, präzisiert Dr. Marcus Müller von der Universität Hohenheim. „Auch der Mischmeister im Asphaltwerk kann den neuen Asphalt nicht rechtzeitig auf die nötige Temperatur vorheizen, wenn er über die exakten Zeiten nicht informiert ist.“

Die Folge sind Produktionsunterbrechungen. „Unser Verfahren erfasst die logistisch relevanten Daten – wie die Geschwindigkeit des Lastwagens und des Fertigers – und speichert sie in einer Cloud-Lösung“, erläutert Dr. Müller. „Auf diese Weise können alle Beteiligten zeitnah informiert werden. Das gewährleistet eine Ankunft des Materials Just-in-Time.“ Der Vorteil: Kürzere Bauzeiten und langlebigere Straßen von besserer Qualität.

Fahrerassistenzsystem unterstützt Walzenfahrer

Letzteres ist auch das Hauptaugenmerk eines weiteren Ergebnisses von SmartSite: Ein Fahrerassistenzsystem für die Walzenfahrer. „Über- und Unterverdichtung sind ein großes Problem im Straßenbau“, erklärt Dr. Müller. „Wird der Asphalt zu wenig verdichtet, ist er spröde und muss schneller wieder saniert werden. Verdichtet man zu stark, leidet die Griffigkeit, was vor allem im Kurvenbereich Probleme verursacht.“

Doch auf der gleichmäßig schwarzen Asphaltfläche verliere man sehr leicht den Überblick, welche Bereiche man bereits gewalzt hat. „Unser Fahrerassistenzsystem verschafft Orientierung mit Hilfe weißer Linien, die der Walzenfahrer nachfahren muss – ähnlich wie bei einem Navigationsgerät“, verdeutlicht Dr. Müller. So koordiniere das System mehrere Walzen im Verbund und leitet die Fahrer an.

Digitalisierung im Straßenbau reduziert Staus und Kosten

Über diese Digitalisierung im Straßenbau könne man den gesamten Bauprozess besser überwachen und steuern. „Das ermöglicht es nicht nur Störungen zu vermeiden, sondern auch den Energie- und Ressourcenbedarf zu reduzieren“, schlussfolgert Dr. Müller.

Lange Staus mit hohem Kohlendioxid-Ausstoß, Zusatzkosten durch Bauverzögerungen und vorzeitige Straßenschäden könne SmartSite in Zukunft reduzieren, zeigt sich der Experte zuversichtlich.

Hintergrund: Forschungsprojekt SmartSite

„SmartSite – Smarte, autonome Baumaschinen, Baustellenumgebungen und Bauprozesssteuerung für den intelligenten Straßenbau“ (www.smartsite-project.de ) lautet der vollständige Name des Forschungsprojektes unter der wissenschaftlichen Leitung der Universität Hohenheim. Praxispartner sind die Drees & Sommer AG, die Ammann Verdichtung GmbH, die ceapoint aec technologies GmbH, die Ed. Züblin AG und die Topcon Deutschland Positioning GmbH.

Das Bundesministerium für Wirtschaft und Energie (BMWi) fördert das Projekt seit November 2013 mit insgesamt 2,96 Mio. Euro, wovon 745.000 Euro an die Universität Hohenheim entfallen. Es endet am 31. Dezember 2016.

Kontakt für Medien:
Dr. Marcus Müller, Universität Hohenheim, Fachgebiet Wirtschaftsinformatik 2
T 0711 459 24161, E marcus.mueller@uni-hohenheim.de

Prof. Dr. Stefan Kirn, Universität Hohenheim, Institut für Health Care & Public Management, Fachgebiet Wirtschaftsinformatik 2
T 0711 459 24025, E wi2office@uni-hohenheim.de

Text: Elsner

Media Contact

Florian Klebs Universität Hohenheim

Weitere Informationen:

http://www.uni-hohenheim.de/

Alle Nachrichten aus der Kategorie: Architektur Bauwesen

Die zukunftsorientierte Gestaltung unseres Wohn- und Lebensraumes erhält eine immer größer werdende Bedeutung. Die weltweite Forschung in den Bereichen Architektur und Bauingenieurwesen leistet hierzu einen wichtigen Beitrag.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Nachhaltiges Bauen, innovative Baumaterialien, Bautenschutz, Geotechnik, Gebäudetechnik, Städtebau, Denkmalschutz, Bausoftware und Künstliche Intelligenz im Bauwesen.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer