Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Virusproteine im Matroschka Design – Selbstspaltung ermöglicht neue Funktionen

08.10.2013
Die Schweinepest zählt zu den verlustreichsten Tierseuchen und bedroht die Schweinehaltung weltweit.

Verantwortlich ist das Virus der klassischen Schweinepest (KSP-Virus) das zu den Flaviviren gehört. Virologen der Veterinärmedizinischen Universität Wien (Vetmeduni Vienna) sind den Grundmechanismen dieses Erregers auf der Spur.


Wie die Matroschka Puppe spaltet sich das NS3 Protein selbst und lässt neue Proteine entstehen.
Frauke Lejeune / Vetmeduni Vienna

Sie fanden heraus, dass ein bestimmtes Virusprotein sich über das bekannte Maß hinaus selbst in unterschiedlich funktionierende Einheiten zerteilen kann. Die Erkenntnisse wurden im Journal of Virology veröffentlicht und könnten in der Zukunft auch Ansätze für das Verständnis und die Bekämpfung des verwandten Hepatitis C Virus liefern.

Viren sind keine Lebewesen sondern bestehen nur aus einem genetischen Programm. Im Falle der Flaviviren ist dieses Programm auf einem RNA (Ribonukleinsäure) Genom gespeichert, das von einer Proteinhülle umschlossen ist. Um sich fortzupflanzen und ihren vollen Lebenszyklus zu entfalten, benötigen Viren einen Wirt (Mensch, Tier oder Pflanze). Eine infizierte Wirtszelle wird dann dazu gezwungen, neue Viruspartikel herzustellen und so das Virus zu vermehren. Till Rümenapf und seine Kollegen vom Institut für Virologie erforschen den Lebenszyklus des KSP-Virus, indem sie Funktionen der viralen Komponenten genau untersuchen. „Nur die Grundlagenforschung ermöglicht es uns, die Strategien des Virus zu verstehen und angepasste Methoden zur Bekämpfung zu entwickeln“, erklärt Rümenapf.

Ein Virus ist hoch effizient organisiert

Insbesondere für RNA haltige Viren ist es von Vorteil, ein möglichst kompaktes Genom zu haben. Dies erlaubt schnelle Vermehrung und sichert hohe Stabilität. Um viel Information auf einem kleinen Genom zu speichern, haben Viren verschiedene Strategien entwickelt. Flaviviren haben das Problem gelöst, indem die gesamte genetische Information auf ein einziges Gen reduziert ist. Hieraus geht eine einzige Proteinkette hervor, die anschließend über zahlreiche Zwischenstufen in die einzelnen Proteine zerlegt wird, die jeweils unterschiedliche Aufgaben erfüllen.

Virusfamilie mit berühmten Vertretern

Die Familie der Flaviviren, dazu gehört auch das KSP-Virus, ist verantwortlich für eine Reihe von gefährlichen Infektionskrankheiten. Beim Menschen sind das die durch Zeckenbiss übertragene Frühsommer-Meningoenzephalitis (FSME), das tropische Dengue Fieber und die Hepatitis C.

Der im vergangenen Jahr an die Vetmeduni Vienna berufene Virologe Till Rümenapf erforscht seit Jahren mit seinen Kollegen die molekularen Mechanismen des KSP-Virus und verwandter Viren. In den Fokus gerückt ist dabei das so genannte Nichtstrukturprotein 3 (NS3), das als Enzym eine zentrale Rolle bei der Replikation des Erbguts einnimmt und die Bildung von Viruspartikeln steuert. Damit erfüllt es im Konzert der Virusproteine die Funktion des „Dirigenten“, der die Geschwindigkeit bestimmt und den Takt hält.

Teilung in zwei Schritten

Benjamin Lamp und Kollegen aus Rümenapfs Forschungsgruppe gingen dem NS3 Protein nun genauer auf den Grund. Sie fanden heraus, dass NS3 sich selbst attackiert und bislang unbekannte Spaltprodukte entstehen. Bei dieser Teilung von NS3 entstehen eine Proteinase, ein Enzym das wiederum Proteine spalten kann, und eine Helikase, ein Enzym das bei der Vervielfältigung des Erbguts eine wichtige Rolle spielt. Die entstandene Proteinase kann sich ein weiteres Mal zerteilen und selbst inaktivieren.

Selbsttrennung von NS3 ist überlebenswichtig für das Virus

Die Forscher zeigten in ihrer aktuellen Studie, dass sich NS3 nur an bestimmten, ganz genau definierten Stellen, spaltet. Als der Wissenschafter Lamp diese Schnittstellen veränderte, war das Virus nicht mehr in der Lage, sich in einer Wirtszelle effizient zu vermehren. Daraus lässt sich schließen, dass die Schnittstellen extrem wichtig für den Lebenszyklus des Virus sind. Rümenapf führt aus: „Seit 20 Jahren erforscht die wissenschaftliche Community das NS3 Protein. Wir waren überrascht, nun plötzlich diese neuen enzymatisch aktiven Spaltprodukte zu finden. Die bisherigen Vorstellungen über die Vermehrung des KSP-Virus und anderer Flaviviren müssen neu überdacht werden.“

Die wissenschaftliche Arbeit “Autocatalytic Cleavage within Classical Swine Fever Virus NS3 Leads to a Functional Separation of Protease and Helicase” von Benjamin Lamp, Christiane Riedel, Eveline Wentz, Maria-Alejandra Tortorici und Till Rümenapf wurde aktuell im Journal of Virology veröffentlicht. (doi: 10.1128/JVI.00754-13)

http://jvi.asm.org/content/87/21/11872#ref-list-1

Wissenschaftlicher Kontakt:
Prof. Till Rümenapf
Institut für Virologie
Veterinärmedizinische Universität Wien (Vetmeduni Vienna)
till.ruemenapf@vetmeduni.ac.at
Aussenderin:
Dr. Susanna Kautschitsch
Wissenschaftskommunikation / Public Relations
Veterinärmedizinische Universität Wien (Vetmeduni Vienna)
T +43 1 25077-1153
susanna.kautschitsch@vetmeduni.ac.at

Susanna Kautschitsch | idw
Weitere Informationen:
http://www.vetmeduni.ac.at

Alle Nachrichten aus der Kategorie: Agrar- Forstwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Im Focus: Charakterisierung von thermischen Schnittstellen für modulare Satelliten

Das Fraunhofer IFAM in Dresden hat ein neues Projekt zur thermischen Charakterisierung von Kupfer/CNT basierten Scheiben für den Einsatz in thermalen Schnittstellen von modularen Satelliten gestartet. Gefördert wird das Projekt „ThermTEST“ für 18 Monate vom Bundesministerium für Wirtschaft und Energie.

Zwischen den Einzelmodulen von modularen Satelliten werden zur Kopplung eine Vielzahl von Schnittstellen benötigt, die nach ihrer Funktion eingeteilt werden...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

10.000-mal schnellere Berechnungen möglich

20.02.2020 | Physik Astronomie

Darmkrebs: Erhöhte Lebenserwartung dank individueller Therapien

20.02.2020 | Biowissenschaften Chemie

Krebsstammzellen nachverfolgen

20.02.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics