Tunnelbohrung in ein Molekül

Elektronen-Wolken sind der Kleber, der Moleküle zusammenhält. Wenn beispielsweise ein Chlor-Atom und ein Wasserstoff-Atom sich zu Salzsäure verbinden, teilen sie sich die äußeren Elektronen so, dass man nicht mehr unterscheiden kann, zu welchem Atom sie vorher gehörten. Aber wie sehen diese Wolken, auch Orbitale genannt, in den inneren Schichten aus?

Bisher stellte man sie sich als diffuse Gebilde vor, in der alle Elektronen gleich sind. Ein am 11. September in der Zeitschrift Science publiziertes Experiment, das Atomphysiker der Goethe-Universität mit kanadischen Kollegen am National Research Council in Ottawa ausführten, zeigt, dass dieses Bild so nicht stimmt. Nutzt man den quantenmechanischen Tunneleffekt, um die tieferen Schichten des Moleküls „anzubohren“, zeigt sich, dass auch die inneren Orbitale eine eigenständige Form haben. Ebenso wie im Atom haben sie beispielsweise eine Kugel- oder Hantelform und gehören damit beiden Partnern der Bindung gleichermaßen an.

Um einen Blick ins Innere der Elektronenwolke zu werfen, umgab das Forscherteam gasförmige Salzsäuremoleküle mit einem zylinderförmigen „Käfig“ aus speziell polarisiertem Laserlicht. In der Quantenwelt können Elektronen solche Barrieren durchtunneln. Bisher glaubte man aber, dass nur Elektronen von der Oberfläche des Moleküls dazu in der Lage seien. Diese Vorstellung haben die Forscher nun erschüttert. In ihren Experimenten konnten sie erstmals zeigen, dass sich ein solcher Tunnel in ganz seltenen Fällen auch für tiefer gelegene Elektronen auftut. Diese seltenen Ereignisse kann man nur dank einer Eigenart des Salzsäuremoleküls sichtbar machen: verliert es durch den Tunneleffekt eines der beiden äußeren Elektronen, bleibt das Molekül intakt. Wenn jedoch ein Elektron aus der nächst tieferen Schicht entweicht, bricht das Salzsäure-Molekül entzwei.

„Dank einer in Frankfurt entwickelten Technik, der COLTRIMS-Methode, konnten wir die Bruchstücke des Moleküls zusammen mit dem aus dem inneren entkommenen Elektron sichtbar machen“, freut sich Prof. Reinhard Dörner, der für die Goethe Universität an dem Experiment beteiligt war. Diese tiefere Schicht der Elektronenwolke zeigt tatsächlich eine völlig andere Form als die ansonsten sichtbare Außenhaut. Das konnten die Forscher anhand der Richtung rekonstruieren, aus der die Elektronen den Käfig aus Laserlicht verließen.

Science 11 September 2009, Akagi et al: Laser Tunnel Ionization from Multiple Orbitals in HCl

Informationen: Prof. Reinhard Dörner, Institut für Kernphysik, Campus Riedberg, Tel: (069) 798-47003, doerner@atom.uni-frankfurt.de.

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt am Main. 1914 von Frankfurter Bürgern gegründet, ist sie heute eine der zehn größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht derzeit für rund 600 Millionen Euro der schönste Campus Deutschlands. Mit über 50 seit 2000 eingeworbenen Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Universität den deutschen Spitzenplatz ein. In drei Forschungsrankings des CHE in Folge und in der Exzellenzinitiative zeigte sie sich als eine der forschungsstärksten Hochschulen.

Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation Telefon (069) 798 – 2 92 28, Telefax (069) 798 – 2 85 30,

E-Mail hardy@pvw.uni-frankfurt.de

Media Contact

Dr. Anne Hardy idw

Weitere Informationen:

http://www.uni-frankfurt.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

16 Millionen Euro für photonische Quantenprozessoren

BMBF-Projekt PhotonQ vereinigt sieben Universitäten und Forschungseinrichtungen sowie Industriepartner. Quantencomputer sollen einmal in hohem Tempo Problemstellungen lösen, die für klassische Computersysteme nicht bearbeitbar sind. Bis die Rechner jedoch praxistauglich werden,…

Verkehr emittiert viele kleinste Partikel

Forscher des Helmholtz-Zentrums Hereon haben im vergangenen Jahr Luftmessungen an verschiedenen verkehrsrelevanten Orten in Hamburg vorgenommen und dazu Modellierungen für die ganze Stadt erstellt. Das Ergebnis: Die Belastung durch ultrafeine…

Verschränkt und verschlüsselt

Der Physiker Dr. Tobias Huber forscht an den Grundlagen der Quantentechnologie. Dafür erhält er vom Bundesforschungsministerium knapp fünf Millionen Euro. Quantenkommunikation und Quantencomputer: An diesen Zukunftsthemen forscht Dr. Tobias Huber…

Partner & Förderer