Topologische Isolatoren: Elektronen halten Sicherheitsabstand

Rastertunnel-Mikroskopie-Aufnahme von Bismuten in der Nähe einer atomaren Terassenstufe der Siliziumkarbid-Unterlage. Am Rand der (blauen) bienwabenförmig angeordneten Bismut-Atome befinden sich zusätzliche leitfähige Elektronen in einem sehr schmalen, eindimensionalen (goldenen) Kanal, welche sich nur am Rand des Films frei bewegen können. (Bild: Universität Würzburg)

Topologische Isolatoren sind Zwittermaterialien. Das bedeutet, dass sie in ihrem Inneren keinen elektrischen Strom leiten können, sehr wohl aber an ihrem Rand. Gewöhnliche leitfähige Materialien, zum Beispiel Metallkabel, besitzen einen kleinen, aber endlichen elektrischen Widerstand.

Dieser führt zu elektrischen Verlusten und das Material erhitzt sich. Ursache dafür ist die Streuung der Elektronen an Defekten in der Kristallstruktur des Leitermaterials. Hierdurch wird der Fluss der Elektronen gehemmt und ineffizient – wie bei einem Auto auf einem holprigen Feldweg, dessen Fahrt durch Schlaglöcher massiv abgebremst wird.

Im Gegensatz dazu verhalten sich Topologische Isolatoren grundlegend anders. Hier können sich die Elektronen nur entlang eindimensionaler Leitungskanäle am Rand des Materials frei bewegen.

Aufgrund eines physikalischen Phänomens – des Quanten Spin Hall Effekts – können sie dabei nicht mehr an Defekten gestreut werden. Dieser „topologische Schutz“ führt zu einem verlustfreien Strom. Statt eines holprigen Feldwegs gibt es hier quasi eine perfekte Autobahn für Elektronen.

Wie eine Verengung der Fahrbahn

Um das Verhalten der Elektronen in solchen Randkanälen besser zu verstehen, hat ein Forschungsteam der Lehrstühle Experimentelle Physik IV (Professor Ralph Claessen) und Theoretische Physik I (Professor Ronny Thomale) der Julius-Maximilians-Universität Würzburg Untersuchungen an dem kürzlich erstmals synthetisierten Topologischen Isolator Bismuten durchgeführt.

Dabei handelt es sich um eine einzelne Lage von Bismut-Atomen, die in Form eines bienenwabenförmigen Gitters auf dem Halbleiter Siliziumkarbid aufliegt.

Das Team der Experimentalphysik konnte durch ein Rastertunnelmikroskop beobachten, dass sich das Verhalten der Elektronen bei tiefen Temperaturen auffällig verändert: „Auf unserer Elektronenautobahn ist der Einfluss der tiefen Temperatur vergleichbar mit der Fahrbahnverengung bei einer Baustelle.

Hier ist die Gefahr von Zusammenstößen zwischen den Elektronen deutlich erhöht. Um dies zu vermeiden und ausreichend Abstand halten zu können, vermindern die Elektronen daher ihre Geschwindigkeit“, erklärt Ralph Claessen. In Bismuten zeige sich dieses Verhalten in einer temperaturabhängigen Energie-Verteilung der Elektronen in den Randkanälen.

Dieses Phänomen ist bereits aus anderen eindimensionalen Elektronensystemen als „Tomonaga-Luttinger-Verhalten“ bekannt.

Klarheit durch Topologische Isolatoren

Eine genauere theoretische Analyse des Teams der Theoretischen Physik I zeigt, dass der Effekt zwischen zwei Elektronen umso stärker zu Tage tritt, je enger der Randkanal ist – wie bei einer Autobahnbaustelle mit nur einem statt zweier Fahrstreifen.

„Hier müssen alle Autos Rücksicht aufeinander nehmen und die Geschwindigkeit anpassen, um Kollisionen zu vermeiden. Obwohl dieser Effekt grundsätzlich in jedem verengten Leitungskanal auftritt, ist er unter den perfekten Autobahnbedingungen des Topologischen Isolators am deutlichsten zu beobachten.“, sagt Ronny Thomale. Dies sei in der vorliegenden Arbeit zum ersten Mal in beeindruckender Klarheit gelungen.

Die Elektronenautobahnen am Rand von Topologischen Isolatoren könnten Bauelemente künftiger Mikroelektronik werden, in der man die besonders geschützten Leitungskanäle für eine verlustfreie und ultraschnelle Computertechnologie verwendet.

Dies ist auch Thema und Ziel des Exzellenzclusters „ct.qmat“ und des Sonderforschungsbereichs „ToCoTronics“ in der Würzburger Physik. Hierfür muss jedoch zunächst das Verkehrsverhalten der Elektronen vollständig verstanden werden.

Prof. Dr. Ralph Claessen, Experimentelle Physik IV, Universität Würzburg, T +49 (931) 31 85732, claessen@physik.uni-wuerzburg.de;

Prof. Dr. Ronny Thomale, Theoretische Physik I, Universität Würzburg, T +49 (931) 31 86225, rthomale@physik.uni-wuerzburg.de

R. Stühler, F. Reis, T. Müller, T. Helbig, T. Schwemmer, R. Thomale, J. Schäfer, R. Claessen: Tomonaga-Luttinger liquid in the edge channels of a quantum spin Hall insulator; Nature Physics (2019); DOI: 10.1038/s41567-019-0697-z

Ansprechpartner für Medien

Kristian Lozina Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Rotorblattlager erfolgreich getestet

Prüfstand beweist sich im Regelbetrieb Das Fraunhofer-Institut für Windenergiesysteme IWES absolvierte auf dem Lagerprüfstand in Hamburg eine erfolgreiche Testreihe zur beschleunigten Prüfung von Rotorblattlagern. Im Rahmen von Forschungs- und Industrieprojekten…

Die Umwandlung von Formen in Zahlen

Die Natur hat viele Dinge hervorgebracht, die sich in Größe, Farbe, und vor allem in der Form voneinander unterscheiden. Während sich die Farbe oder Größe eines Objekts einfach bestimmen lässt,…

Blutgruppe bestimmt Zusammensetzung des Darmmikrobioms mit

CAU-Forschungsteam weist in großer Genomstudie Zusammenhänge bestimmter Genvarianten mit der Zusammensetzung der Bakterienbesiedlung im menschlichen Körper nach Wissenschaftlerinnen und Wissenschaftler weltweit erforschen seit einigen Jahren, inwiefern die Mikroorganismen, die in…

Partner & Förderer

Indem Sie die Website weiterhin nutzen, stimmen Sie der Verwendung von Cookies zu. mehr Informationen

Die Cookie-Einstellungen auf dieser Website sind so eingestellt, dass sie "Cookies zulassen", um Ihnen das bestmögliche Surferlebnis zu bieten. Wenn Sie diese Website weiterhin nutzen, ohne Ihre Cookie-Einstellungen zu ändern, oder wenn Sie unten auf "Akzeptieren" klicken, erklären Sie sich damit einverstanden.

schließen