Spintronik: Ein neuer Weg zu wirbelnden Spin-Texturen bei Raumtemperatur

Das Team um Sergio Valencia untersuchte die Proben mit Photo-Emissions-Elektronenmikroskopie unter Verwendung von XMCD an BESSY II. Die Bilder zeigen die radial ausgerichten Spintexturen in einer runden und einer quadratischen Probe, die aus einem ferromagnetischen Material auf einer supraleitenden YBCO-Insel besteht. Der weiße Pfeil zeigt den einfallenden Röntgenstrahl. © HZB

Ein Team am HZB hat an BESSY II eine neue, einfache Methode untersucht, mit der sich stabile radiale magnetische Wirbel in magnetischen Dünnschichten erzeugen lassen.

In einigen Materialien bilden Spins komplexe magnetische Strukturen mit Durchmessern im Bereich von Nano- oder Mikrometern, in denen sich die Magnetisierungsrichtung verdreht und krümmt. Beispiele für solche Strukturen sind magnetische Blasen, Skyrmionen, Wirbel und radial ausgerichtete Vortizes.

Spintronik: Rechnen mit Spins

Unter dem Schlagwort Spintronik wird daran geforscht, solche winzigen magnetischen Strukturen zu nutzen, um Daten zu speichern oder logische Operationen durchzuführen. Der Vorteil: verglichen mit den mikroelektronischen Komponenten ist der Stromverbrauch von spintronischen Bauelementen extrem gering. Allerdings gelingt die Erzeugung und Manipulation von Skyrmionen nur in wenigen Materialien und unter ganz besonderen Umständen.

Der neue Ansatz

Eine internationale Kollaboration unter der Leitung des HZB-Physikers Dr. Sergio Valencia hat nun einen neuen Ansatz untersucht, mit dem sich komplexe Spin-Texturen in einer Vielzahl von Verbindungen erzeugen und stabilisieren lassen. Dabei handelt es sich um Radialwirbel, in denen die Magnetisierung zum Zentrum der Struktur hin oder von ihm weg gerichtet ist. Diese Art der magnetischen Konfiguration ist sehr instabil, da das System eine einfachere Konfiguration bevorzugt, die weniger Energie benötigt. Im neuen Ansatz können diese radialen Wirbel mit Hilfe von supraleitenden Strukturen erzeugt werden, wobei Oberflächendefekte für die Stabilisierung sorgen.

Ferromagnet auf YBCO-Insel

Die Proben bestehen aus mikrometergroßen Inseln aus dem Hochtemperatursupraleiter YBCO, auf die eine ferromagnetische Verbindung aufgebracht wird. Das Abkühlen der Probe auf unter 92 Kelvin (-181 °C) bringt YBCO in den supraleitenden Zustand. In diesem Zustand wird ein äußeres Magnetfeld angelegt und sofort wieder entfernt. Dieser Prozess ermöglicht das Eindringen und festpinnen (pinning) von magnetischen Flüssen, die wiederum selbst ein Magnetfeld erzeugen. Dieses magnetische Streufeld sorgt in der ferromagnetischen Schicht für die Ausbildung von radialen Wirbeln.

Nützliche Defekte

Wird die Temperatur im Anschluss erhöht, geht YBCO vom supraleitenden wieder in den normalen Zustand über. Damit verschwindet das Streufeld und damit auch der entsprechende magnetische Radialwirbel. Das Team um Valencia beobachtete jedoch, dass Oberflächendefekte dies verhindern: Radialwirbel bleiben in diesem Fall erhalten, bis hin zu Raumtemperatur.

Ähnlich wie Skyrmionen

Kleinere Wirbel hatten einen Durchmesser von etwa 2 Mikrometern und sind damit etwa zehnmal so groß wie typische Skyrmionen. Das Team untersuchte Proben mit kreisförmigen und quadratischen Geometrien und stellte fest, dass kreisförmige Geometrien die Stabilität der eingeprägten magnetischen Radialwirbel erhöhen.

„Wir nutzen das von den supraleitenden Strukturen erzeugte Magnetfeld, um den darauf platzierten Ferromagneten bestimmte magnetische Domänen aufzuprägen. Dabei haben wir entdeckt, wie Oberflächendefekte diese Spin-Texturen stabilisieren. Die magnetischen Strukturen ähneln denen von Skyrmionen und sind für spintronische Anwendungen interessant“, erklärt Valencia.

Dies ist ein neuartiger Weg, um solche Strukturen zu erzeugen und zu stabilisieren, und er kann in einer Vielzahl von ferromagnetischen Materialien angewendet werden. „Das sind gute neue Aussichten für die weitere Entwicklung der supraleitenden Spintronik“, sagt Valencia.

Wissenschaftliche Ansprechpartner:

Dr. Sergio Valencia
Sergio.valencia@helmholtz-berlin.de

Originalpublikation:

ACS Appl. Mater. Interfaces (2024): Size-Dependence and High Temperature Stability of Radial Vortex Magnetic Textures Imprinted by Superconductor Stray Fields

David Sanchez-Manzano, Gloria Orfila, Anke Sander, Lourdes Marcano, Fernando Gallego, Mohamad-Assaad Mawass, Francesco Grilli, Ashima Arora, Andrea Peralta, Fabian A. Cuellar, Jose A. Fernandez-Roldan, Nicolas Reyren, Florian Kronast, Carlos Leon, Alberto Rivera-Calzada, Javier E. Villegas, Jacobo Santamaria, and Sergio Valencia
DOI: 10.1021/acsami.3c17671

https://www.helmholtz-berlin.de/pubbin/news_seite?nid=26566&sprache=de&seitenid=1

Media Contact

Dr. Antonia Rötger Kommunikation
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue Erkenntnisse zur Wechselwirkung von Femtosekundenlasern mit lebendem Gewebe

Die nichtlineare optische Mikroskopie hat unsere Fähigkeit revolutioniert, biologische Prozesse zu beobachten und besser zu verstehen. Licht hat jedoch auch die Fähigkeit, lebende Materie zu schädigen. Die Mechanismen, die irreversible…

Präeklampsie ist eine der häufigsten Schwangerschaftskomplikationen

700.000 Euro für Präeklampsieforschung… Florian Herse vom Max Delbrück Center und Martin Gauster von der Medizinischen Universität Graz erforschen, welche Rolle Hofbauerzellen dabei spielen. Dafür erhalten sie einen D-A-CH-Grant in…

Was kann eine Blaualgenblüte stoppen?

Wenn blaugrüne Teppiche Flüsse und Seen überziehen, ist es mit dem Badevergnügen oft vorbei. Doch was tun gegen solche Massenentwicklungen von Cyanobakterien, umgangssprachlich auch Blaualgenblüten genannt? Bisher hat sich die…

Partner & Förderer