Science: Quantenoszillator reagiert auf Druck

Im Diagramm sind Frequenzspektren gegen mechanische Verformung aufgetragen. Jedes atomare Quantensystem hinterlässt eine charakteristische weiße Linie. (Bild: KIT / CFN)<br>

Schon heute helfen sie, die Struktur von Festkörpern besser zu verstehen, wie Forscher des Karlsruher Instituts für Technologie heute im Magazin Science vorstellen. Mittels Josephson-Kontakten haben sie die Schwingungen einzelner Atome ausgemessen, mit denen diese zwischen zwei Positionen „tunnelten“, also quantenmechanisch oszillierten. Durch Verformen der Probe änderte sich sogar die Frequenz. (DOI: 10.1126/science.1226487).

„Wir sind nun in der Lage, die Frequenzen einzelner tunnelnder Atome im Festkörper direkt zu kontrollieren“, sagen Alexey Ustinov und Georg Weiß, Professoren des Physikalischen Instituts am KIT und Mitglieder des Centers for Functional Nanostructures CFN. Bislang hatten es die Forscher bildlich gesprochen mit einer verschlossenen Kiste zu tun, in der es vielfältig klapperte. Nun gibt es nicht nur die Möglichkeit, die einzelnen Objekte darin zu vermessen, sondern auch kontrolliert ihre physikalischen Eigenschaften zu verändern.

Die dafür eingesetzte Probe besteht aus einem supraleitenden Ring, der durch einen nanometerdicken Nicht-Leiter, einem sogenannten Josephson-Kontakt, unterbrochen ist. Das auf diese Weise gebildete Qubit kann sehr präzise zwischen zwei Quantenzuständen geschaltet werden. „Interessanterweise koppelt so ein Josephson-Qubit mit den anderen atomaren quantenmechanischen Systemen im Nicht-Leiter“, erklärt Ustinov. „Und über diese Kopplung haben wir die Frequenzen vermessen können.“

Bei Temperaturen knapp oberhalb des absoluten Nullpunktes sind die meisten Rauschquellen im Material ausgeschaltet. Die letzte Quelle von Störimpulsen sind die Atome des Materials selber, wenn sie zwischen zwei äquivalenten Positionen springen. „Diese Frequenzspektren der Atomsprünge können wir mit dem Josephson-Kontakt sehr genau vermessen“, so Ustinov. „Im übertragenen Sinne haben wir ein Mikroskop für die Quantenmechanik einzelner Atome.“

In dem vorliegenden Experiment wurden 41 springende Atome gezählt und deren Frequenzspektrum vermessen, während die Probe mit einem Piezoelement ein klein wenig verbogen wurde. Georg Weiß erklärt: „Die Atomabstände werden dadurch um eine Winzigkeit geändert, die Frequenzen der tunnelnden Atome ändern sich aber recht stark.“ Bis vor Kurzem konnte man nur die Gesamtheit aller tunnelnden Atome messen. Erst seit ein paar Jahren hat man die Technologie, die atomaren Tunnelsysteme einzeln anzusprechen. Die neu entwickelte Methode am KIT, atomare Quantensysteme zu kontrollieren, könnte wertvolle Einblicke geben, wie Qubits fit für die Anwendung gemacht werden könnten. Aber auch die Materialien konventioneller elektronischer Bauteile, wie etwa Transistoren, könnten mit dieser Methode untersucht und Grundlagen für weitere Miniaturisierung gelegt werden.

Webseiten der Forscher:
http://www.phi.kit.edu/ustinov-research.php
http://www.phi.kit.edu/weiss-atomares_tunneln.php
Das paper bei science:
http://www.sciencemag.org/magazine
Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Weiterer Kontakt:

Kosta Schinarakis
PKM – Themenscout
Tel.: +49 721 608 41956
Fax: +49 721 608 43658
E-Mail:schinarakis@kit.edu

Media Contact

Monika Landgraf idw

Weitere Informationen:

http://www.kit.edu

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Analyse von Partikeln des Asteroiden Ryugu liefert überraschende Ergebnisse

Eine kleine Landekapsel brachte im Dezember 2020 Bodenpartikel vom Asteroiden Ryugu zur Erde – Material aus den Anfängen unseres Sonnensystems. Gesammelt hatte die Proben die japanische Raumsonde Hayabusa 2. Geowissenschaftler…

Kollision in elf Millionen Kilometern Entfernung

Die im letzten Jahr gestartete NASA-Raumsonde DART wird am 27. September 2022 um 1.14 Uhr MESZ in elf Millionen Kilometer Entfernung von der Erde erproben, ob der Kurs eines Asteroiden…

Wie die Erderwärmung astronomische Beobachtungen beeinträchtigt

Astronomische Beobachtungen mit bodengebundenen Teleskopen sind extrem abhängig von lokalen atmosphärischen Bedingungen. Der menschgemachte Klimawandel wird einige dieser Bedingungen an Beobachtungsstandorten rund um den Globus negativ beeinflussen, wie ein Forschungsteam…

Partner & Förderer