Schneebälle aus dem Labor

"Schneebälle" aus dem Labor Uni Innsbruck

Helium ist die einzige Substanz, die selbst am absoluten Nullpunkt unter Normaldruck nicht fest wird. Anders ist dies, wenn Helium sich auf geladenen Teilchen ablagert. Dann kann sich auch bei niedrigem Druck eine feste Heliumschicht ausbilden.

Diese sogenannten Atkins-Schneebälle wurden schon für einige einfache Teilchen nachgewiesen. Nun hat eine Arbeitsgruppe um Prof. Paul Scheier vom Institut für Ionenphysik und Angewandte Physik der Universität Innsbruck erstmals Fullerene mit einer festen Heliumschicht überzogen und vermessen. Fullerene sind kugelförmige Moleküle aus Kohlenstoffatomen, die wie auf einem Fußball angeordnet sind. Man spricht deshalb auch von Fußballmolekülen.

Heliumschicht schmilz dahin

Das Team um Paul Scheier erzeugt im Labor ultrakalte Heliumtröpfchen, in denen die beinahe kugelförmigen Moleküle aus 60 Kohlenstoffatomen eingelagert und ionisiert werden. Mit einem Massenspektrometer werden die Teilchen dann analysiert. „Wir konnten zeigen, dass Fullerene bis zu 32 Heliumatome aufnehmen können, bevor der feste Heliummantel um das Kohlenstoffmolekül aufzuschmelzen beginnt und ein Teil der Atome zu wandern beginnt“, erzählt der Physiker.

„Mit 60 Heliumatomen ist die erste Schale um das Fulleren voll. Ab 80 Atomen ändert sich das Absorptionsverhalten des Ions nicht mehr, was wir mit dem Einsetzen der Suprafluidität interpretieren.“ Mit Hilfe eines verstellbaren, schmalbandigen Laserstrahls konnten die Wissenschaftler Absorptionsspektren ermitteln, die Auskunft über den Zustand des Heliums geben.

Die Experimente konnten durch eine Kollaboration von Mitgliedern des Doktoratskollegs Atome, Licht und Moleküle verwirklicht werden. Mit umfangreichen theoretischen Simulationen konnten die Forscher die Ergebnisse aus dem Labor bestätigen.

Schneebälle im Weltall

Die von den Innsbrucker Physikern gemeinsam mit einem internationalen Team ermittelten Absorptionsspektren bilden eine wichtige Grundlage für die Beurteilung von astrophysikalischen Beobachtungen. Im Jahr 2010 wurde die Existenz von Fullerenen im Weltall erstmals nachgewiesen. Die nun in der Fachzeitschrift Nature Communications veröffentlichten Ergebnisse liefern weitere Hinweise für die Interpretation von Messergebnissen aus dem All.

Die Kohlenstoffverbindungen sind an zahlreichen chemischen und physikalischen Prozessen im Weltall beteiligt und könnten zum Beispiel in interstellaren Wolken bei der Entstehung komplexer Biomoleküle als Katalysator gedient haben. Das haben frühere Untersuchungen der Innsbrucker Ionenphysiker bereits ergeben.

Finanziell unterstützt wurden diese Arbeiten unter anderem vom österreichischen Wissenschaftsfonds FWF und der Europäischen Union.

Rückfragehinweis:
Univ.-Prof. Dr. Paul Scheier
Institut für Ionenphysik und Angewandte Physik
Universität Innsbruck
Telefon: +43 512 507 52660
E-Mail: paul.scheier@uibk.ac.at

Dr. Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Telefon: +43 512 507 32022
E-Mail: christian.flatz@uibk.ac.at

http://dx.doi.org/10.1038/ncomms13550 Atomically resolved phase transition of fullerene cations solvated in helium droplets. M. Kuhn, M. Renzler, J. Postler, S. Ralser, S. Spieler, M. Simpson, H. Linnartz, A. G. G. M. Tielens, J. Cami, A. Mauracher, Y. Wang, M. Alcamí, F. Martín, M. K. Beyer, R. Wester, A. Lindinger, P. Scheier. Nature Communications 2016 DOI: 10.1038/ncomms13550
http://www.uibk.ac.at/ionen-angewandte-physik/https://www.uibk.ac.at/ionen-angewandte-physik/

Media Contact

Dr. Christian Flatz Universität Innsbruck

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Junger Gasriesenexoplanet gibt Astronomen Rätsel auf

Wissenschaftler finden den bisher jüngsten Super-Jupiter, für den sie sowohl Masse als auch Größe messen konnten. Eine Forschergruppe um Olga Zakhozhay vom MPIA hat einen Riesenplaneten um den sonnenähnlichen Stern…

Im dynamischen Netz der Sonnenkorona

In der mittleren Korona der Sonne entdeckt ein Forscherteam netzartige, dynamische Plasmastrukturen – und einen wichtigen Hinweis auf den Antrieb des Sonnenwindes. Mit Hilfe von Messdaten der amerikanischen Wettersatelliten GOES…

Metall dringt tiefer in Auenböden ein als Plastik

Kunststoffe und Metalle verteilen sich unterschiedlich in den Böden von Flussauen: Während Plastikpartikel sich in den obersten Bodenschichten konzentrieren, finden sich Metalle bis in eine Tiefe von zwei Metern. Das…

Partner & Förderer