Schnappschüsse lichtgetriebener Elektronen

Laserphysiker Dmitry Zimin, Erstautor der Studie, an einem Laseraufbau für Attosekundenexperimente
© Fazio Guiseppe

Laserphysiker der LMU und des Max-Planck-Instituts für Quantenoptik (MPQ) haben neue Erkenntnisse über die Dynamik von Elektronen in Festkörpern unmittelbar nach einer Photoinjektion gewonnen.

Ein Laserpuls trifft auf ein Elektron in einem Festkörper. Erhält es durch die Lichtwelle genügend Energie, kann es sich danach frei durch einen Festkörper bewegen. Photoinjektion heißt dieses Phänomen, das Wissenschaftler seit den Anfängen der Quantenmechanik erforschen. Immer noch gibt es offene Fragen, wie die Prozesse dabei zeitlich ablaufen. Laserphysiker des attoworld-Teams der LMU und des Max-Planck-Instituts für Quantenoptik (MPQ) haben nun direkt beobachtet, wie sich die optischen Eigenschaften von Silizium und Siliziumdioxid in den ersten Femtosekunden (Millionstel einer Milliardstel Sekunde) nach der Photoinjektion mit einem starken Laserpuls entwickeln.

Relativ einfach ist die Physik der Photoinjektion, wenn es um den von Albert Einstein erklärten photoelektrischen Effekt geht. In diesem Fall absorbiert ein Elektron ein einziges Photon. Dieses muss nur genug Energie haben, um das Elektron aus einem Potential zu befreien, das seine Bewegung einschränkt. Komplizierter wird es, wenn kein Photon in der Lichtwelle über genügend Energie verfügt. In diesem Fall können gebundene Elektronen sich befreien, indem sie mehr als ein Photon auf einmal absorbieren – oder durch sogenanntes Quantentunneln. Dabei handelt es sich um nichtlineare Prozesse, die nur bei einem starken elektrischen Feld wirksam sind. Das bedeutet, dass sie nur im zentralen Teil eines Laserpulses effizient ablaufen.

Mit Werkzeugen der Attosekundenforschung ist es möglich, freie Ladungsträger innerhalb eines einzigen Halbzykluses der Welle eines Lichtpulses zu erzeugen. So lässt sich die Leitfähigkeit eines Festkörpers innerhalb weniger Femtosekunden um Größenordnungen erhöhen. Wie schnell Festkörper nach ultraschneller Photoinjektion ihre optischen Eigenschaften ändern, haben Laserphysiker des attoworld-Teams der LMU und des Max-Planck-Instituts für Quantenoptik nun untersucht. Dazu schickten sie zwei Pulse von wenigen Wellenzyklen durch eine dünne Probe: einen intensiven sogenannten Pumppuls, der Ladungsträger erzeugte, und einen schwachen Testpuls, der mit den Teilchen wechselwirkte.

Da sich die Photoinjektion auf ein Zeitintervall beschränkte, das kürzer als ein halber Zyklus der Lichtwelle des Testfelds war, konnten die Forscher beobachten, wie die Ladungsträger in den ersten Femtosekunden mit dem Testfeld wechselwirkten. Diese Information war in den Verzerrungen kodiert, die die Photoinjektion dem zeitabhängigen elektrischen Feld des Testpulses aufprägte. Die Wissenschaftler maßen diese Verzerrungen mit einer neuartigen Technik zur Abtastung des optischen Feldes und wiederholten ihre Messungen für unterschiedliche Verzögerungen zwischen dem anregenden und dem beobachtenden Puls.

Die innovative Technik für feldaufgelöste Pump-Probe-Messungen gibt dem attoworld-Team nun direkten Zugang zu lichtgetriebenen elektrischen Strömen während und nach der Photoinjektion. „Das wichtigste Ergebnis ist, dass wir jetzt wissen, wie wir solche Experimente durchführen und analysieren können, und dass wir die lichtgetriebene Elektronenbewegung tatsächlich gesehen haben, wie es vorher niemand konnte“, sagt Yakovlev. „Wir waren überrascht, dass es keine klaren Anzeichen für die Bildung von Quasiteilchen gab. Das bedeutet, dass die Vielteilchenphysik in diesen speziellen Messungen keinen großen Einfluss darauf hatte, wie sich die Leitfähigkeit des Mediums nach der Photoinjektion aufbaut, aber vielleicht sehen wir in der Zukunft noch etwas ausgefallenere Physik.“

Die gesamte moderne Elektronik basiert auf der Steuerung des Flusses von Ladungsträgern, dabei wird ihre Fähigkeit, sich durch Schaltkreise zu bewegen, schnell erhöht oder verringert. Das Attoworld-Teams arbeitet daran, die ultimativen Geschwindigkeitsgrenzen dieser Steuerung mit Hilfe von Licht zu erreichen. Die neuen Erkenntnisse könnten dazu beitragen, dass in Zukunft Signalverarbeitungen im Petahertz-Bereich stattfinden kann und die so genannte Lichtwellenelektronik möglich wird. Lichtkontrollierte Elektronik würde die heutige Elektronik um etwa das 100.000-fache beschleunigen. „Wir haben nur an der Oberfläche dessen gekratzt, was solche ultraschnellen Messungen bewirken können“, sagt Yakovlev. „Ausgestattet mit unseren Erkenntnissen können auch andere Forscher nun unseren Ansatz nutzen, um ihre Fragen zu beantworten.“
Thorsten Naeser

Wissenschaftliche Ansprechpartner:

Apl. Prof. Dr. Vladislav S. Yakovlev
ATTOWORLD
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1, 85748 Garching, Germany
Tel:. +49.89.32905.733
E-Mail: vladislav.yakovlev@physik.uni-muenchen.de
http://www.attoworld.de/atto-20

Originalpublikation:

Dmitry A. Zimin, Nicholas Karpowicz, Muhammad Qasim, Matthew Weidman, Ferenc Krausz, Vladislav S. Yakovlev
Dynamic optical response of solids following 1-fs-scale photoinjection
Nature

https://www.lmu.de/de/newsroom/newsuebersicht/news/schnappschuesse-lichtgetriebener-elektronen.html

Media Contact

LMU Stabsstelle Kommunikation und Presse
Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer