Quantenphysik: Angekündigter Zufall

Zufällige Erzeugung von verschränkten Lichtteilchen

Bisher hatte die Standardquelle für verschränkte Photonen einen entscheidenden Nachteil: Der Emissionszeitpunkt war unbekannt und es ließ sich damit nicht feststellen, wann die Teilchen die Quelle verlassen. Diese spontane Emission der Teilchenpaare führte zu diversen Problemen bei experimentellen Realisierungen. Möchte man z.B. einen Quantencomputer auf der Basis von Photonen bauen, hieße das, dass man nicht genau weiß, wann die sogenannten Quantenbits, in diesem Fall in Form von Photonen, vorhanden sind. In der Praxis bedeutet dies, dass nach jedem vermuteten Rechenschritt Photonen gemessen werden müssen, um festzustellen, ob dieser erfolgreich war.

Eine Messung in der Quantenmechanik heißt im Allgemeinen auch eine Zerstörung des quantenmechanischen Zustandes – die Teilchen können für keine weitere Quantenrechnung verwendet werden. Die Anwendbarkeit eines optischen Quantencomputers war dadurch bisher stark begrenzt.

Signalisierte Emission von Verschränkung

Die von Wiener ForscherInnen realisierte Quelle von verschränkten Photonenpaaren, bei der die Emission der Paare angekündigt wird, macht eine Messung zur Anwesenheit der Teilchen überflüssig und ermöglicht eine Erweiterung des derzeitigen optischen Quantencomputers. Das Konzept dieser Quelle basiert auf zusätzlichen Hilfsteilchen, deren Messung eine Aussage über den Zustand der verbleibenden Teilchen ermöglicht. Im konkreten Fall des Wiener Experiments präparieren die ForscherInnen sechs Photonen in einem speziellen quantenmechanischen Zustand. Misst man nun vier dieser Photonen in einer festgelegten Konfiguration, so befinden sich die übrigen beiden Photonen in einem verschränkten Zustand. „Vier gleichzeitige Detektorklicks der vier Hilfsphotonen signalisieren also die Aussendung eines Paares verschränkter Photonen“, erklärt die am Experiment beteiligte Physikerin Stefanie Barz.

Für die Realisierung von auf Verschränkung basierenden Technologien, wie optischen Quantennetzwerken und photonischen Quantencomputern, ist diese wissenschaftliche Arbeit der Wiener PhysikerInnen ein wichtiger Schritt.

Verschränkung in der Quantenmechanik

Verschränkung ist eine Eigenschaft der Quantenmechanik, die kaum mit dem alltäglichen, makroskopischen Verständnis der Welt vereinbar ist und kein Gegenstück in der klassischen Physik besitzt. Sind zwei Lichtteilchen (Photonen) miteinander verschränkt, so bleiben sie über beliebige Distanzen verbunden. Führt man eine Messung, z.B. des Polarisationszustandes, an einem der beiden Teilchen durch, so ändert sich auf „spukhafte Weise“ auch der Zustand des anderen Teilchens.

Neben der fundamentalen Bedeutung von verschränkten Systemen, liefern diese auch vollkommen neue Ansätze zur Informationsverarbeitung und zur abhörsicheren Kommunikation unter Ausnutzung von quantenmechanischen Prinzipien. Verschränkte Photonen bilden daher seit vielen Jahren einen Ausgangspunkt für zahlreiche Grundlagenexperimente zur Quantenmechanik und sind die Basis für experimentelle Realisierungen von Konzepten zur Quanteninformationsverarbeitung. So wurden bereits einfache Quantencomputer realisiert, die die Gesetze der Quantenmechanik ausnutzen, um eine schnellere und sicherere Informationsverarbeitung zu ermöglichen.

Publikation in „Nature Photonics“:

Heralded generation of entangled photon pairs. Stefanie Barz, Gunther Cronenberg, Anton Zeilinger, Philip Walther. 27. Juni 2010. DOI 10.1038/NPHOTON.2010.156

Kontakt
Mag. Stefanie Barz
Quantum Optics, Quantum Nanophysics, Quantum Information
Fakultät für Physik
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43 1 4277-512 06
stefanie.barz@univie.ac.at
Rückfragehinweis
Mag. Veronika Schallhart
Öffentlichkeitsarbeit
Universität Wien
1010 Wien, Dr.-Karl-Lueger-Ring 1
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at

Media Contact

Veronika Schallhart idw

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Kunststoffe – alles Müll?

»Open Lab« im Fraunhofer LBF gibt Einblicke in die Kunststoffforschung. Als erste Stadt in Deutschland erhielt Darmstadt vor 25 Jahren den Ehrentitel »Wissenschaftsstadt«. Auch das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit…

Zukunft der Ampel wird weiter erforscht

Das Forschungsprojekt „KI4LSA“, welches die Frage beantworten sollte, ob die Steuerung von Ampelanlagen mit künstlicher Intelligenz (KI) den Verkehrsfluss verbessern kann, bringt Fraunhofer im August 2022 zum Abschluss. Über 30…

Schmerzlinderung ohne Nebenwirkungen und Abhängigkeit

Forschende der FAU nutzen Adrenalin-Rezeptoren für hochwirksame Analgetika. Neuartige Substanzen, die Adrenalin- statt Opioid-Rezeptoren aktivieren, haben eine ähnliche schmerzlindernde Wirkung wie Opiate, jedoch keine negativen Folgen wie Atemdepression und Abhängigkeit….

Partner & Förderer