Organische Detektoren für Röntgenstrahlung

<br>

Die Technologie hat das Potential einer erheblich günstigeren Fertigung und verspricht eine bessere Auflösung als heutige Detektoren. Die Innovation besteht darin, in die organischen Detektormaterialien Substanzen einzumischen, die Röntgenstrahlung absorbieren und in sichtbares Licht umwandeln.

Die globale Siemens-Forschung Corporate Technology koordiniert das dreijährige Förderprojekt HOP-X, in dem entsprechende Technologien entwickelt und demonstriert werden sollen. Mögliche Anwendungen für die neuen Detektoren sehen Experten zunächst in der Mammographie und bei konventionellen Röntgengeräten.

Heute besteht ein Röntgendetektor meist aus einer Szintillatorschicht, die Röntgenstrahlung in sichtbares Licht umwandelt, und einer Photodiode, die dieses Licht pixelweise registriert. Die Einsparungsmöglichkeiten bei dieser auf amorphem Silizium basierenden Technologie sind weitgehend ausgeschöpft.

Zusätzlich überwacht im Röntgengerät eine Dosismesskammer zwischen Patient und Detektor die eingestellte Strahlendosis. Diese Messkammer darf das Röntgenbild nicht verändern. Bisher werden hierfür Ionisationsmesskammern eingesetzt. Diese sind aber nicht empfindlich und schattenfrei genug für die niedrigen Strahlendosen, wie sie in modernen Röntgengeräten möglich sind.

Organische Photodetektoren können in beiden Fällen Abhilfe schaffen: Sie basieren auf organischen Kunststoffen und lassen sich kostengünstig als Lösung auf ein Substrat aufsprühen oder drucken. Dadurch sind die Produktionskosten – anders als bei kristallinen Detektoren – nahezu unabhängig von der Fläche.
Zudem können die organischen Dioden auch als Dosismesskammern eingesetzt werden. Sie sind empfindlicher als Ionisationsmesskammern und können leichter strukturiert werden. So lässt sich die Messeinrichtung auf die individuelle Patientengeometrie anpassen und die Dosisregulierung noch besser steuern.

Allerdings detektieren organische Photodioden überwiegend sichtbares Licht. Siemens-Forscher arbeiten deshalb an speziellen Nanopartikeln, die als Szintillatoren in die organische Kunststofflösung eingemischt werden.

Alternativ untersuchen andere Projektpartner die Zumischung von Halbleiternanokristallen, die Röntgenlicht direkt absorbieren und in Form von Elektronen an die organische Detektormatrix abgeben. Siemens ist zudem für den Aufbau der neuen Photodioden und für die Realisierung von Demonstratoren zuständig.

Weitere Partner in dem vom Bundesforschungsministerium geförderten Projekt HOP-X sind die Merck KgaA, das Leibniz-Institut für Neue Materialien und die CAN-GmbH. (IN 2013.02.1)

Media Contact

Dr. Norbert Aschenbrenner Siemens InnovationNews

Weitere Informationen:

http://www.siemens.de/innovation

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer