Nanoskalige Magnetwirbel mit ferroelektrischer Polarisation

Skyrmion: Magnetwirbel aus atomaren Elementarmagneten @ Universität Augsburg/EP V

Forschern aus Augsburg und Dresden ist es gemeinsam mit Kolleginnen und Kollegen aus Japan, der Schweiz und Ungarn gelungen, nanoskalige Magnetwirbel – sogenannte Skyrmionen – in einem magnetischen Halbleiter zu detektieren.

„Die Tatsache dass die Wirbel in diesem speziellen Material gleichzeitig magnetisch sind und elektrische Ordnung zeigen, verspricht deutliche Fortschritte auf dem Weg zu einer energieeffizienten Datenspeicherung“, resümiert der Augsburger Experimentalphysiker Prof. Dr. Alois Loidl die jüngst in Nature Materials und Science Advances veröffentlichten Ergebnisse dieser internationalen Forschungskooperation.

Bereits vor mehr als 50 Jahren beschrieb Tony Skyrme (Harwell) theoretisch Wirbelfelder, die sich wie Teilchen mit endlicher Masse verhalten; später wurden diese Wirbelfelder zu Ehren des britischen Physikers Skyrmionen genannt.

Unter Nutzung von Skyrmes theoretischem Konzept sagten Bogdanov und Mitarbeiter (TU Dresden) dann die Existenz thermodynamisch stabiler Spinwirbel in magnetisch geordneten Systemen voraus, in denen sich atomare Elementarmagnete in äußerst robusten und stabilen Wirbelstrukturen anordnen.

Solche Magnetwirbel – magnetische Skyrmionen also – wurden 2009 von Pfleiderer und Mitarbeiter (TU München) in Mangansilizium (MnSi), einem metallischen Ferromagneten, bei tiefen Temperaturen und kleinen Magnetfeldern tatsächlich gefunden.

Seither konnten Skyrmionen in sehr unterschiedlichen Materialien, in Metallen und Isolatoren, in Kristallen und in dünnen magnetischen Filmen nachgewiesen werden. Insbesondere in dünnen Filmen konnten diese robusten magnetischen Wirbel auch bei Raumtemperatur stabilisiert werden.

Magnetische Skyrmionen können heute relativ einfach erzeugt (geschrieben) und vernichtet (gelöscht) werden. Sie gelten als ideale Speichermedien der Zukunft, denn sie sind nur einige Nanometer groß, bestehen aus wenigen Atomen und haben damit magnetische Strukturen, die deutlich kleiner sind als diejenigen, die für die konventionelle Datenspeicherung verwendet werden. Magnetische Skyrmionen können durch kleinste Ströme bewegt, mit geringstem Energieaufwand und fast verlustfrei manipuliert werden.

Als die kleinsten stabilen magnetischen Strukturen eignen sie sich ideal für eine Erhöhung der Speicherdichte. Ihre Manipulation erfordert nur minimale Ströme, um Größenordnungen geringer als in konventioneller Technologie, und verspricht damit höchste Energieeffizienz. „Dementsprechend groß ist die Hoffnung, dass diese nanoskaligen Magnetwirbel mittelfristig die Speichertechnologie revolutionieren werden“, sagt Loidl.

Er und seine Arbeitsgruppe am Lehrstuhl für Experimentalphysik V der Universität Augsburg konnten nun gemeinsam mit Forschern aus Budapest und Dresden sowie aus der Schweiz und aus Japan derartige nanoskalige Magnetwirbel erstmals in einem magnetischen Halbleiter – nämlich in der Gallium-Verbindung GaV4S8 – detektieren (Kézsmárki et al., Nature Materials 14, 1116, 2015). Die in dieser Verbindung neu entdeckten Skyrmionen zeigen eine bisher nicht gekannte magnetische Struktur, denn die atomaren Elementarmagnete, die einen Spin-Wirbel aufbauen, drehen hier senkrecht zur Ebene („Skyrme meets Néel“, Nature Physics 11, 800, 2015).

Aber noch wichtiger ist die Tatsache, dass diese magnetischen Skyrmionen im Halbleiter GaV4S8 auch signifikante ferroelektrische Polarisation tragen (Ruff et al., Science Advances 1, E1500916, 2015): Um den Kern des Spinwirbels bildet sich durch magnetoelektrische Wechselwirkung eine ringförmige Anordnung parallel ausgerichteter atomarer elektrischer Dipolmomente, die sensitiv für elektrische Felder sind, während die magnetischen Skyrmionen auf magnetische Felder reagieren.

„Dadurch“, fasst Loidl zusammen, „wird es künftig möglich sein, ferroelektrische Polarisation tragende Skyrmionen, wie wir sie in GaV4S8 detektiert haben, nicht nur mit magnetischen, sondern auch mit elektrischen Feldern zu manipulieren und damit einen weiteren wichtigen Schritt hin zu einer nicht-dissipativen und dementsprechend energieeffizienten Datenspeicherung zu gehen.“

Originalveröffentlichungen:

I. Kézsmárki, S. Bordács, P. Milde, E. Neuber, L. M. Eng, J. S. White, H. M. Ronnow, C. D. Dewhurst, M. Mochizuki, K. Yanai, H. Nakamura, D. Ehlers, V. Tsurkan, and A. Loidl: Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8, Nature Materials 14, 1116 (2015)

E. Ruff, S. Widmann, P. Lunkenheimer, V. Tsurkan, S. Bordács, I. Kézsmárki, and A. Loidl: Multiferroicity and skyrmions carrying electric polarization in GaV4S8, Science Advances 1, E1500916 (2015)

Skyrme meets Néel, Research Highlights, Nature Physics 11, 800 (2015)

Zu orbital getriebener Ferroelektrizität in GaV4S8 siehe auch:

Zhe Wang, E. Ruff, M. Schmidt, V. Tsurkan, I. Kécsmárki, P. Lunkenheimer, and A. Loidl: Polar dynamics at the Jahn-Teller transition in ferroelectric GaV4S8, Physical Review Letters 115, 207601 (2015)

Ansprechpartner:

Prof. Dr. Alois Loidl
Experimentalphysik V
Center for Electronic Correlations and Magnetism
Universität Augsburg
86135 Augsburg
Email: alois.loidl@physik.uni-augsburg.de
http://www.physik.uni-augsburg.de/exp5

http://www.nature.com/nmat/journal/v14/n11/full/nmat4402.html
http://advances.sciencemag.org/content/1/10/e1500916
http://www.nature.com/nphys/journal/v11/n10/full/nphys3511.html

Ansprechpartner für Medien

Klaus P. Prem idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Mikroplastik in Korallen

Wie Plastik das Leben im Ozean beeinträchtigt, ist eine der drängenden Fragen der Meeresforschung. Eine neue Studie des Leibniz-Zentrums für Marine Tropenforschung (ZMT) befasst sich mit der Auswirkung von Mikroplastik…

HZDR-Forscher*innen kombinieren Magnetresonanz-Tomographie mit Protonentherapie

Den weltweit ersten Prototypen zur Echtzeit-Verfolgung für bewegliche Tumoren mittels Magnetresonanz-Tomographie (MRT) während der Protonentherapie wollen Forscher*innen des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) aufbauen. Dazu kombinieren sie am Nationalen Zentrum für Strahlenforschung…

Kleine Kraftpakete: Wie Rifforganismen den Folgen des Klimawandels widerstehen können

Eine neue Untersuchung tropischer Foraminiferen zeigt, wie diese kalkbildenden Einzeller auf Ozeanversauerung und -erwärmung reagieren. Die Meeresgeoökologin Dr. Marleen Stuhr vom Leibniz-Zentrum für Marine Tropenforschung (ZMT) in Bremen leitete die…

Partner & Förderer