Leichte Atomkerne und ihre Antikerne im präzisen Vergleich

In einer aufwändigen Messung an ALICE (A Large Ion Collider Experiment) am Kernforschungszentrum CERN in Genf hat ein Team aus mehreren Hundert internationalen Wissenschaftlern, darunter auch drei von der Universität Tübingen, die Eigenschaften von leichten Atomkernen und ihren Antikernen vergleichend untersucht.

An dem Versuchsaufbau waren von der Universität Tübingen Professor Hans Rudolf Schmidt, Dr. Jens Wiechula (jetzt Universität Frankfurt) und Benjamin Hess vom Physikalischen Institut beteiligt. Mit größerer Präzision als bisher hat das Wissenschaftlerteam gemessen, dass sich leichte Atomkerne und ihre Antikerne genau symmetrisch zueinander verhalten. Die Ergebnisse wurden in der Fachzeitschrift Nature Physics veröffentlicht.

Die gewöhnliche Materie, die wir auf der Erde kennen, hat einen schwer fassbaren Gegenpart, die Antimaterie. Normale Materie besteht aus Atomen, die sich wiederum als ein ganzes System wechselwirkender Teilchen beschreiben lassen.

Zu jedem Teilchen gibt es in der Antimaterie ein Antiteilchen mit den gleichen Eigenschaften, aber entgegengesetzter elektrischer Ladung. In Gegenwart von gewöhnlicher Materie kann die Antimaterie nicht existieren und kommt auf der Erde nicht vor.

Doch sie kann in einem großen Teilchenbeschleuniger wie am CERN für einen kurzen Moment erzeugt werden. Damit Antimaterie entstehen kann, muss normale Materie im Experiment auf über eine Billion Grad Celsius aufgeheizt werden.

Das ALICE-Team hat seine Messungen an Deuterium-Kernen, das sind schwere Wasserstoffkerne, die neben dem Proton ein zusätzliches Neutron enthalten, und ihren Antikernen durchgeführt. Außerdem untersuchten die Wissenschaftler Helium-3-Kerne, die gegenüber normalem Helium aus zwei Protonen und zwei Neutronen ein Neutron weniger enthalten, und ihrem Antistück.

Die Wissenschaftler bestimmten jeweils das Verhältnis von Masse zu Ladung. Messungen zu den gleichen Eigenschaften wurden zuvor mit großer Präzision an Protonen und Antiprotonen durchgeführt, die bereits eine genaue Symmetrie ergeben hatten. Diese Erkenntnisse haben die Wissenschaftler mit der neuen ALICE-Studie weitergetrieben, denn im Atomkern sind die Protonen mit Neutronen verbunden, sodass sich Unterschiede in der Bindung gegenüber den entsprechenden Antiprotonen zu den Antineutronen ergeben könnten.

Die technischen Herausforderungen bei einem solchen Experiment sind im Großen wie im Kleinen riesig: Einerseits müssen mit Hilfe immenser Energien bei der Kollision von Blei-Ionen die leichten Antikerne erzeugt werden, andererseits müssen die Detektoren bei der Messung der Kerne und Antikerne verschwindend kleine Energiemengen präzise erfassen.

Bei der Kollision der Blei-Ionen im ALICE-Experiment wurden Kerne und entsprechende Antikerne in fast gleicher Rate erzeugt. Dadurch konnten ihre Eigenschaften über die Bestimmung der Trajektorien im Magnetfeld der Detektoren sowie über ihre Flugzeit bis zum Auftreffen auf den Detektor sehr genau verglichen werden.

Die gemessenen Unterschiede im Masse-Ladungs-Verhältnis der Deuterium-/Antideuteriumkerne sowie der Helium-3-Kerne/-Antikerne können die Forscher unter Einbeziehung der geschätzten Messunsicherheiten als mit Null vereinbar angeben.

Damit bestätigen sie eine fundamentale Symmetrie, das sogenannte CPT-Theorem, das besagt, dass leichte Atomkerne und ihre Antikerne den gleichen physikalischen Gesetzen unterliegen. Die Erkenntnisse aus der Grundlagenforschung bestätigen das Standardmodell der Elementarteilchen und ihrer Kräfte und sind für kosmologische Forschungen von hoher Relevanz.

Originalpublikation:
ALICE Collaboration: Precision measurement of the mass difference between light nuclei and anti-nuclei. Nature Physics, Online-Veröffentlichung am 17. August 2015, doi:10.1038/nphys3432

Kontakt:
Prof. Dr. Hans Rudolf Schmidt
Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät
Physikalisches Institut
Telefon +49 7071 29-74451
hans-rudolf.schmidt[at]uni-tuebingen.de

http://www.youtube.com/watch?v=uooIcCJJttU – Englische Zusammenfassung im Kurzfilm auf Youtube

Media Contact

Janna Eberhardt idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-tuebingen.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Das Mikrobiom verändert sich dynamisch und begünstigt wichtige Funktionen für den Wirt

Ein interdisziplinäres Forschungsteam des Kieler SFB 1182 untersucht am Beispiel von Fadenwürmern, welche Prozesse die Zusammensetzung des Mikrobioms in Wirtslebewesen steuern. Alle vielzelligen Lebewesen – von den einfachsten tierischen und…

Wasser im Boden – genaue Daten für Landwirtschaft und Klimaforschung

Die PTB präsentiert auf der Woche der Umwelt, wie sich die Bodenfeuchte mithilfe von Neutronenstrahlung messen lässt. Die Bodenfeuchte hat nicht nur Auswirkungen auf die Landwirtschaft, sondern ist als Teil…

Bioreaktor- und Kryotechnologien für bessere Wirkstofftests mit humanen Zellkulturen

Medizinische Wirkstoffforschung… Viele Neuentwicklungen von medizinischen Wirkstoffen scheitern, weil trotz erfolgreicher Labortests mit Zellkulturen starke Nebenwirkungen bei Probanden auftreten. Dies kann passieren, wenn zum Beispiel die verwendeten Zellen aus tierischem…

Partner & Förderer