Kopplung von Quantenobjekten mit Licht am Limit

Schematische Darstellung des Quanten-Experiments: Zwei durch Licht gekoppelte Pendel. Quelle: TU Kaiserslautern.

Auf diesem Gebiet forscht der Kaiserslauterer Nachwuchswissenschaftler Dr. Nicolas Spethmann, der sich zur Zeit im Rahmen des Marie Curie-Programms der EU an der University of California in Berkeley aufhält.

In dem Forschungsprojekt wird das aus der Schulphysik wohlbekannte System zweier durch eine Feder verbundener Pendel in die Quantenwelt übertragen. Wie aus dem Alltag bekannt, führt die Auslenkung nur eines Pendels durch die Kopplung zu einer Schwingung auch des anderen Pendels, wobei die mechanische Energie periodisch zwischen den Pendeln hin und her wechselt.

Für das Pendant aus der Quantenwelt wählten Spethmann und Kollegen als Pendel ultrakalte Gaswolken aus tausenden Atomen, die durch Lichtkräfte im Vakuum gehalten werden und mit den Gesetzen der Quantenmechanik beschrieben werden können. Die Kopplung zwischen beiden Gaswolken erfolgt durch den Austausch von einzelnen Lichtanregungen, sogenannten Photonen.

Um den winzigen Effekt einzelner Photonen zu verstärken, findet das Experiment zwischen fast perfekten Spiegeln statt, in denen ein einzelnes Photon bis zu einige zehntausend Mal hin und her reflektiert wird. Damit können die Wissenschaftlerinnen und Wissenschaftler die quantenmechanische Kopplung der beiden Quantensysteme durch die Lichtwechselwirkung beobachten, indem sie die durch die Spiegel hindurchtretenden Photonen detektieren.

Nach den Gesetzen der Quantenmechanik bleibt der Beobachtungsvorgang allerdings nicht ohne Folge für das experimentelle System, sondern stört die gewünschte Dynamik der gekoppelten Quantensysteme. Diese als Heisenbergsche Unschärferelation bekannte Konsequenz der Quanteneigenschaften können Spethmann und Kollegen charakterisieren.

Es handelt sich um eine grundsätzliche Limitierung für quantentechnologische Anwendungen, die nicht durch einfache, technische Verbesserungen aufgehoben, sondern nur durch weitergehende Quantenkontrolle in einigen Fällen umgangen werden kann. Der große Erfolg der Studie ist es, in der Kopplung zweier Quantenvielteilchensysteme diese fundamentale Grenze zu erreichen.

Die Ergebnisse demonstrieren die Möglichkeiten, aber auch Herausforderungen, mit Licht Quantenobjekte zu koppeln, und helfen, die Konsequenzen in Anwendungen der Quantentechnologie besser zu kontrollieren. Die Forschungsergebnisse wurden kürzlich von Spethmann und seinen amerikanischen Kolleginnen und Kollegen in der hochangesehenen Fachzeitschrift Nature Physics veröffentlicht (Nicolas Spethmann, Jonathan Kohler, Sydney Schreppler, Lukas Buchmann and Dan M. Stamper-Kurn: Cavity-mediated coupling of mechanical oscillators limited by quantum back-action; Nature Physics, 2015, DOI: 10.1038/NPHYS3515).

Spethmann wird seine Forschung ab Mai 2016 an der TU Kaiserslautern im Umfeld der Arbeitsgruppe von Professor Artur Widera (Fachbereich Physik und Forschungszentrum OPTIMAS) fortsetzen.

http://www.uni-kl.de

Media Contact

Thomas Jung Technische Universität Kaiserslautern

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Globale Erwärmung aktiviert inaktive Bakterien im Boden

Neue Erkenntnisse ermöglichen genauere Vorhersage des Kohlenstoffkreislaufs. Wärmere Böden beherbergen eine größere Vielfalt an aktiven Mikroben: Zu diesem Schluss kommen Forscher*innen des Zentrums für Mikrobiologie und Umweltsystemforschung (CeMESS) der Universität…

Neues Klimamodell

Mehr Extremregen durch Wolkenansammlungen in Tropen bei erhöhten Temperaturen. Wolkenformationen zu verstehen ist in unserem sich wandelnden Klima entscheidend, um genaue Vorhersagen über deren Auswirkungen auf Natur und Gesellschaft zu…

Kriebelmücken: Zunahme der Blutsauger in Deutschland erwartet

Forschende der Goethe-Universität und des Senckenberg Biodiversität und Klima Forschungszentrums in Frankfurt haben erstmalig die räumlichen Verbreitungsmuster von Kriebelmücken in Hessen, Nordrhein-Westfalen, Rheinland-Pfalz und Sachsen modelliert. In der im renommierten…

Partner & Förderer