Erster Blick auf den hydrodynamischen Elektronenfluss in 3D-Materialien

Elektronen fließen wie Wasser
© MPI CPfS

Ein Team von Forschern aus Harvard, dem MIT und dem Max-Planck-Institut für Chemische Physik fester Stoffe entwickelte Experimente und eine Theorie zur Erklärung des hydrodynamischen Elektronenflusses in 3D-Metallen und beobachtete ihn zum ersten Mal mit einer neuen Bildgebungstechnik.

Elektronen fließen durch die meisten Metalle eher wie ein Gas als wie eine Flüssigkeit, was bedeutet, dass sie nicht miteinander wechselwirken. Zwar wurde schon lange Zeit vermutet, dass Elektronen unter bestimmten Bedingungen auch wie eine Flüssigkeit fließen könnten, aber erst jüngste Fortschritte im Bereich neuer und entsprechender Messtechniken ermöglichten es, diese Effekte zu beobachten – allerdings nur in zweidimensionalen Materialien, wie Graphen.

Die Hydrodynamik von Elektronen in dreidimensionalen Metallen blieb aufgrund eines grundlegenden Verhaltens von Elektronen in drei Dimensionen sehr viel schwerer beobachtbar: Die Elektronen schirmen sich gegenseitig ab. In dreidimensionalen Metallen sind die Elektronen daher weniger geneigt, miteinander zu interagieren. Bis jetzt. Ein Team von Forschern aus Harvard, dem MIT und dem Max-Planck-Institut für Chemische Physik fester Stoffe haben neue Materialien, Messtechnik und eine Theorie entwickelt, die die Beobachtung von hydrodynamischem Elektronenfluss auch in drei Dimensionen ermöglicht.

Die Forscher schlugen vor, dass Elektronen in Materialien mit hoher Elektronendichte nicht durch direkte Wechselwirkungen, sondern durch die Quantenschwingungen des Atomgitters, die so genannten Phononen, miteinander wechselwirken könnten. In etwa so, als würden zwei Personen auf einem Trampolin springen, die sich nicht direkt, sondern über die elastische Kraft der Federn gegenseitig antreiben. Und tatsächlich konnte in der neuen Studie gezeigt werden, dass hydrodynamischer Elektronenfluss in dem dreidimensionalen Metall Wolframditellurid durch einen solchen Mechanismus auftritt.

Johannes Gooth, ein Mitautor der Studie, ist von der Studie begeistert und freut sich darauf, mehr potenzielle hydrodynamische Materialien mit dieser Technik zu untersuchen. „Es ist wirklich sehr aufregend zu sehen, dass Elektronen durch ein dünnes Stück Metall fließen, wie Wasser durch ein Rohr. Als wir vor 4 Jahren mit der Planung der Experimente begannen, war das völlig unklar. Der Mechanismus hinter dem hydrodynamischen Elektronenfluss ist sehr allgemein und stellt unser allgemeines Verständnis von Metallen noch einmal auf den Kopf. “

Diese Forschungsarbeit wurde gemeinsam von Tony X. Zhou, Nitesh Kumar, Yuliya Dovzhenko, Ziwei Qiu, Christina A. C. Garcia, Andrew T. Pierce, Johannes Gooth, Polina Anikeeva und Claudia Felser verfasst. Es wurde teilweise vom US-Energieministerium (DOE), Basic Energy Sciences Office, Division of Materials Sciences and Engineering, unter der Auszeichnung DE-SC0019300, Army Research Office grant no. W911NF-17-1-0023 und Army Research Office MURI (Ab-Initio Solid-State Quantum Materials) Zuschuss Nr. W911NF-18-1-0431 sowie der Gordon and Betty Moore Foundation durch einen EPiQS-Initiativzuschuss Nr. GBMF4531 und Moore Inventor Fellowship Stipendium Nr. GBMF8048.

Wissenschaftliche Ansprechpartner:

Johannes.Gooth@cpfs.mpg.de
Claudia.Felser@cpfs.mpg.de

Originalpublikation:

https://www.nature.com/articles/s41567-021-01341-w
DOI: 10.1038/s41567-021-01341-w

https://www.cpfs.mpg.de

Media Contact

Dipl.-Übers. Ingrid Rothe Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Chemische Physik fester Stoffe

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Wie Staphylokokken sich gegen Antibiotika schützen

Das Hautbakterium Staphylococcus aureus entwickelt oft Antibiotika-Resistenzen. Es kann dann schwer zu behandelnde Infektionen verursachen. Forschende der Universität Bonn haben aufgeklärt, wie raffiniert sich ein bestimmter Staphylococcus aureus-Stamm gegen das…

Auf der Jagd nach Hyperkernen

Der WASA-Detektor bei GSI/FAIR… Mit dem WASA-Detektor wird bei GSI/FAIR gerade ein besonderes Instrument aufgebaut. In der kommenden Experimentierzeit der FAIR-Phase 0 in 2022 sollen damit am Fragmentseparator FRS sogenannte…

Eine Gefahr für die Ostsee?

Langzeitentwicklung der Belastung durch polyzyklische aromatische Kohlenwasserstoffe. Polyzyklische aromatische Kohlenwasserstoffe (PAK) sind weit verbreitete, hochgiftige und oft krebserregende Umweltschadstoffe. Marion Kanwischer vom Leibniz-Institut für Ostseeforschung Warnemünde (IOW) und ihr Team…

Partner & Förderer