Die fehlenden Braunen Zwerge

Die Verteilung der bekannten nahen braunen Zwerge vor einem Himmelspanorama im infraroten Licht. Der Pfeil zeigt Rotationsrichtung der Milchstraße, die Linie trennt die beiden Hemisphären. AIP/2MASS

Bislang glaubte man, die Umgebung der Sonne und die dort beheimateten Braunen Zwerge sehr gut zu kennen. Die nun veröffentlichte Studie von Gabriel Bihain und Ralf-Dieter Scholz, beide Wissenschaftler am Leibniz-Institut für Astrophysik Potsdam (AIP), stellt dies grundlegend in Frage.

Die tatsächliche Anzahl Brauner Zwerge in verschiedenen Himmelsregionen zu kennen, ist unter anderem wichtig, um den Prozess der Sternentstehung und die Bewegungen von Sternen in der Milchstraße besser zu verstehen.

Braune Zwerge sind eine Art Bindeglied zwischen Sternen und Planeten. Mit ihrer geringen Masse von weniger als etwa sieben Prozent der Sonnenmasse können sie in ihrem Inneren nicht genug Druck und Hitze für die Wasserstofffusion zu Helium aufbauen, den grundlegenden Prozess zur Strahlungserzeugung in Sternen. Die Sternentstehung ist also quasi fehlgeschlagen, wenn ein Brauner Zwerg entsteht.

Gabriel Bihain und Ralf-Dieter Scholz haben sich die Verteilung bekannter naher Braunen Zwerge nun nochmals aus einem anderen Blickwinkel angesehen. Überraschenderweise fanden sie eine signifikante Asymmetrie, die stark von der Verteilung der Sterne abweicht.

„Ich habe die bekannten nahen Braunen Zwerge auf die galaktische Ebene projiziert und bemerkt: der halbe Himmel ist beinahe leer! Das war eine völlig unerwartetes Ergebnis, denn wir betrachten eine Umgebung, die eigentlich gleichförmig aussehen sollte“, beschreibt Gabriel Bihain seine Entdeckung. Die leere Region überlappt von der Erde aus gesehen zu einem großen Teil mit dem Nordhimmel.

Die Forscher gehen davon aus, dass es viele weitere Braune Zwerge gibt, welche die von ihnen gefundene Lücke füllen werden. Wenn sich diese Annahme als richtig herausstellt, bedeutet dies, dass die Sternentstehung mit einem Verhältnis von einem Braunen Zwerg zu vier Sternen deutlich öfter fehlschlägt als bislang gedacht. In jedem Fall müsste das etablierte Bild der Sonnenumgebung und der Eigenschaften der Population Brauner Zwerge insgesamt neu geprüft werden.

„Es ist durchaus wahrscheinlich, dass sich neben normalen Braunen Zwergen auch weitere Objekte mit noch geringerer, planetarer Masse in den Beobachtungsdaten verstecken. Es lohnt sich also definitiv, die vorhandenen und zukünftigen Daten noch einmal neu zu durchforsten“, so Ralf-Dieter Scholz.

Wissenschaftlicher Kontakt: Dr. Gabriel Bihain, 0331 7499-452, gbihain@aip.de
Pressekontakt: Kerstin Mork, 0331 7499-803, presse@aip.de

Fachpublikation: G. Bihain and R.-D. Scholz, A non-uniform distribution of the nearest brown dwarfs, Astronomy and Astrophysics, 589, A26 (2016).

Das Leibniz-Institut für Astrophysik Potsdam (AIP) widmet sich astrophysikalischen Fragen, die von der Untersuchung unserer Sonne bis zur Entwicklung des Kosmos reichen. Forschungsschwerpunkte sind dabei kosmische Magnetfelder und extragalaktische Astrophysik sowie die Entwicklung von Forschungstechnologien in den Bereichen Spektroskopie, robotische Teleskope und E-Science. Seinen Forschungsauftrag führt das AIP im Rahmen zahlreicher nationaler, europäischer und internationaler Kooperationen aus. Das Institut ist Nachfolger der 1700 gegründeten Berliner Sternwarte und des 1874 gegründeten Astrophysikalischen Observatoriums Potsdam, das sich als erstes Institut weltweit ausdrücklich der Astrophysik widmete. Seit 1992 ist das AIP Mitglied der Leibniz-Gemeinschaft.

Media Contact

Kerstin Mork idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.aip.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Durchleuchten im Nanobereich

Physiker der Universität Jena entwickeln einen der kleinsten Röntgendetektoren der Welt Ein Röntgendetektor kann Röntgenstrahlen, die durch einen Körper hin­durchlaufen und nicht von ihm absorbiert werden, aufnehmen und somit ein…

Wer hat das Licht gestohlen?

Selbstinduzierte ultraschnelle Demagnetisierung limitiert die Streuung von weicher Röntgenstrahlung an magnetischen Proben.   Freie-Elektronen-Röntgenlaser erzeugen extrem intensive und ultrakurze Röntgenblitze, mit deren Hilfe Proben auf der Nanometerskala mit nur einem…

Mediterrane Stadtentwicklung und die Folgen des Meeresspiegelanstiegs

Forschende der Uni Kiel entwickeln auf 100 Meter genaue Zukunftsszenarien für Städte in zehn Ländern im Mittelmeerraum. Die Ausdehnung von Städten in niedrig gelegenen Küstengebieten nimmt schneller zu als in…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close