Der ganz besondere rote Diamant

Einer der winzigen roten Diamanten, mit denen Prof. Dr. Jan Meijer forscht. Foto: Swen Reichhold/Universität Leipzig

Physikern der Universität Leipzig ist ein wichtiger Schritt bei der Nutzung der Quantentechnologie für Computer und Sensoren gelungen. Grundlage der Experimente von Prof. Dr. Jan Meijer vom Felix-Bloch-Institut für Festkörperphysik und seiner Arbeitsgruppe sind Farbzentren, die einen Diamanten rot färben.

Die besonderen Eigenschaften dieser Zentren wurden bereits im Jahr 2000 von Forschern der Universität Stuttgart entdeckt, aber erst jetzt ist es gelungen, diese Zentren mit fast hundertprozentiger Sicherheit gezielt künstlich herzustellen. Erst diese hohe Ausbeute ermöglicht es, ohne den bisher nötigen großen Aufwand Quantensysteme und in Zukunft Quantencomputer herzustellen.

Meijer und sein Team veröffentlichten ihre Forschungsergebnisse gerade im Fachjournal „Nature Communications“.

Die Physiker stellten in Zusammenarbeit mit Prof. Dr. Bernd Abel vom Leibniz-Institut für Oberflächenmodifizierung (IOM in Leipzig), die besonderen „roten“ Diamanten selbst her – in einer hochmodernen und weltweit einmaligen Anlage zur Ionenimplantation und Elektronenbestrahlung.

In dem Produktionsprozess wird ein Stickstoffatom mit hoher Geschwindigkeit in das äußerst stabile Gitter eines Rohdiamanten „geschossen“. Im Ergebnis entsteht der spezielle Diamant, der eine hohe Dichte der sogenannten NV-Zentren hat. Das sind Diamantgitterfehler aus einer Kombination eines Stickstoffatoms mit einer Fehlstelle, die dem Diamanten besondere Eigenschaften verleihen, unter anderem die rote Färbung.

Wird er bei Zimmertemperatur mit grünem Licht bestrahlt, werden die NV-Zentren auf die unvorstellbar tiefe Temperatur von minus 273 Grad Celsius lokal heruntergekühlt, obwohl sie sich mitten in dem Diamantkristall befinden, der weiterhin Raumtemperatur hat.

„Dadurch kann man Quantensysteme bei Raumtemperatur bearbeiten. Bisher ging das nur im Labor bei sehr tiefen Temperaturen in Kryostaten – das sind überdimensionale, kostspielige Thermoskannen. Das macht die ganze Sache so spannend. Das bedeutet, man kann einen Quantencomputer oder einen Quantensensor für den Alltagsgebrauch herstellen“, erklärt Prof. Meijer.

In einem anschaulichen Experiment nutzten die Forscher einen roten Diamanten als extrem empfindlichen Magnetsensor, um eine E-Gitarre zum Klingen zu bringen. Hierbei wird die Position der einzelnen Saiten mit sehr hoher Geschwindigkeit und Auflösung abgetastet und danach der Ton errechnet.

In einem so einfachen und damit kostengünstig produzierbaren Aufbau konnte dieser Effekt bisher nicht gezeigt werden. Hierbei sind im Gegensatz zu anderen Techniken weder aufwendig erzeugte Mikrowellen, noch präzise ausgerichtete hochreine Kristalle notwendig, sondern einfache, preisgünstige speziell behandelte Industriediamanten für Bohrer oder sogar nur profanes Diamantpulver, das normalerweise nur für Schleifpapier genutzt wird.

„Es ist erstaunlich, dass ein so komplexer physikalischer, hochsensitiver Effekt in einem so einfachen und robusten Aufbau möglich wird“, sagt der Physiker.

Der hochempfindliche Magnetfeldquantensensor ist im Gegensatz zu allen bisherigen Quantensensoren mit gängigen automatischen Bestückungsanlagen für gedruckte Schaltungen in hohen Stückzahlen zu verarbeiten und bei Raumtemperatur einsatzfähig.

„Bislang wurden die quantenmechanischen Eigenschaften nur im Labor eingesetzt. Wir wollen sie jetzt unter anderem für Sensoren in der Medizintechnik, in der Radartechnologie oder zur Messung von Positionierungen und Längen in Maschinen nutzen. Dabei wirkt bereits der Diamant wegen seines dichten Gitters wie eine Thermoskanne.

Ein scheinbar paradoxes Verhalten, weil doch die Wärmeleitfähigkeit eines Diamanten sogar zehnmal größer ist als von Kupfer. Nur so lassen sich diese Quanteneffekte auch in natürlichen Umgebungen und bei Raumtemperatur beobachten und gezielt steuern“, erläutert Meijer.

Der weitere Vorteil ist, ihm zufolge, dass diese Sensoren nur von wenigen Naturkonstanten abhängig sind, was den Produktionsablauf vereinfacht. Dies macht sie für sicherheitsrelevante Systeme bis hin zu Stromzählern in Haushalten interessant.

„Die Quantenmechanik wurde in großen Teilen von den theoretischen Physikern Heisenberg, Hund oder Bloch vor fast 100 Jahren an der Universität Leipzig entwickelt. Es ist deshalb eine besondere Freude, dass die Umsetzung in alltäglichen Produkten nun ebenfalls in Leipzig stattfinden kann“, sagt Meijer.

Prof. Dr. Jan Meijer
Fakultät für Physik und Geowissenschaften
Telefon: +49 341 97-32701
E-Mail: jan.meijer@uni-leipzig.de

https://www.nature.com/articles/s41467-019-12556-0
Originaltitel der Veröffentlichung in “Nature Communications”: “Coulomb-driven single defect engineering for scalable qubits and spin sensors in diamond”, DOI: 10.1038/s41467-019-12556-0

https://www.youtube.com/watch?v=edioyb_SXfo&feature=youtu.be Ein Video zu dem Forschungsprojekt ist auf Youtube zu sehen.

Media Contact

Katrin Henneberg Universität Leipzig

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Freistehendes Plasma mit hoher Energiedichte

Die Idee der Kernfusion begeistert Physiker:innen und Energiefachleute seit Jahrzehnten. Im Kern geht es darum, die physikalisch-chemischen Prozesse, die in der Sonne stattfinden, in vergleichbarer Form auf der Erde zu…

Hochsensitive Quantensensorik für die Medizin

NV-Diamant-Lasersystem mit zwei Medien erstmals erfolgreich demonstriert. Die Messung winziger Magnetfelder, wie sie etwa durch Hirnströme erzeugt werden, eröffnet der medizinischen Diagnostik und Behandlung viele neue Möglichkeiten. Das Forschungsteam um…

Neue Einblicke in die Ammoniakspaltung

Ein internationales Forschungsteam hat neue Erkenntnisse in die Funktionsweise eines Eisenkatalysators gewonnen, mit dem sich Ammoniak in Stickstoff und Wasserstoff spalten lässt. Wasserstoff wird zu Ammoniak umgewandelt, um den Energieträger…

Partner & Förderer