Das Gewicht des Universums

Massereiche Objekte im Universum sind keine perfekten Linsen. Während sie das Licht ablenken, erzeugen sie Verzerrungen. Die Bilder sehen so aus, als ob man durch den Fuß eines Weinglases schaut. © Roberto Schirdewahn (Dieses Foto darf nur in Zusammenhang mit der Presseinformation verwendet werden, bei der es zum Download steht.)

Über die Forschung von Hendrik Hildebrandt berichtet das Wissenschaftsmagazin Rubin der Ruhr-Universität Bochum. Die neueste Analyse des Forschungskonsortiums namens Kilo-Degree Survey ist im Januar 2020 in der Zeitschrift Astronomy and Astrophysics erschienen.

Zwei Verfahren zur Bestimmung der Materiestruktur

Materiedichte und -struktur können Forschungsteams zum einen basierend auf dem kosmischen Mikrowellenhintergrund berechnen, eine Strahlung, die kurz nach dem Urknall ausgesandt wurde und noch heute messbar ist. Dieses Verfahren hat das Planck-Forschungskonsortium verwendet.

Das Team des Kilo-Degree Survey, und einige andere Gruppen, bestimmten die Materiedichte und -struktur mithilfe des Gravitationslinseneffekts: Massereiche Objekte lenken das Licht von Galaxien ab, sodass diese Galaxien von der Erde aus betrachtet mit verzerrter Form an einer anderen Stelle erscheinen, als sie tatsächlich sind.

Aus diesen Verzerrungen können Kosmologen auf die Masse der ablenkenden Objekte und somit auf die Gesamtmasse des Universums zurückschließen. Dazu müssen sie jedoch unter anderem die Abstände zwischen Lichtquelle, ablenkendem Objekt und Beobachter kennen.

Diese wiederum ermitteln die Forscher mithilfe der Rotverschiebung, die besagt, dass das Licht weiter entfernt liegender Galaxien ins Rote verschoben auf der Erde ankommt.

Neue Kalibration mittels Infrarotdaten

Um Entfernungen zu ermitteln, nehmen Kosmologen daher Bilder der Galaxien bei unterschiedlichen Wellenlängen auf, zum Beispiel eines im blauen, eines im grünen und eines im roten Bereich; dann bestimmen sie die Helligkeit der Galaxien auf den verschiedenen Bildern. Hendrik Hildebrandt und sein Team beziehen dabei zusätzlich mehrere Aufnahmen aus dem infraroten Bereich ein, was die Präzision der Entfernungsbestimmung verbessert.

Frühere Analysen hatten bereits gezeigt, dass die auf dem Mikrowellenhintergrund basierenden Daten des Planck-Konsortiums systematisch von den Gravitationslinseneffekt-Daten abweichen. Je nach Datensatz war die Abweichung mehr oder weniger stark ausgeprägt, am stärksten beim Kilo-Degree Survey.

„Unser Datensatz ist der einzige, der auf dem Gravitationslinseneffekt beruht und mit zusätzlichen Infrarotdaten kalibriert ist“, sagt Hendrik Hildebrandt, Heisenbergprofessor und Leiter der Arbeitsgruppe Beobachtende Kosmologie in Bochum. „Das könnte der Grund für die stärkere Abweichung zu den Planck-Daten sein.“

Um diese Diskrepanz zu überprüfen, wertete die Gruppe den Datensatz eines anderen Forschungskonsortiums, des Dark Energy Survey, mithilfe einer ähnlichen Kalibrierung aus. Dadurch entfernten sich auch diese Werte weiter von den Planck-Werten.

Diskussion in Fachkreisen

Ob es sich bei der Diskrepanz zwischen den Datensätzen tatsächlich um einen Hinweis darauf handelt, dass das Standardmodell der Kosmologie falsch ist oder nicht, diskutieren Wissenschaftlerinnen und Wissenschaftler derzeit.

Das Team des Kilo-Degree Survey arbeitet bereits an einer neuen Analyse eines umfangreicheren Datensatzes, der weitere Erkenntnisse beisteuern könnte. Voraussichtlich im Frühjahr 2020 werden sie noch präzisere Daten für Materiedichte und -struktur liefern können.

Ausführlicher Artikel in Rubin

Einen ausführlichen Beitrag zu dem Thema finden Sie im Wissenschaftsmagazin Rubin unter https://news.rub.de/wissenschaft/2020-04-28-kosmologie-wie-viel-wiegt-das-univer…. Texte auf der Webseite und Bilder aus dem Downloadbereich dürfen unter Angabe des Copyrights für redaktionelle Zwecke honorarfrei verwendet werden.

Prof. Dr. Hendrik Hildebrandt
Arbeitsgruppe Beobachtende Kosmologie
Fakultät für Physik und Astronomie
Ruhr-Universität Bochum
Tel.: +49 234 32 24019
E-Mail: hendrik@astro.rub.de

Hendrik Hildebrandt et al.: KiDS+VIKING-450: Cosmic shear tomography with optical and infrared data, in: Astronomy & Astrophysics, 2020, DOI: 10.1051/0004-6361/201834878

Media Contact

Dr. Julia Weiler idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.ruhr-uni-bochum.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Junger Gasriesenexoplanet gibt Astronomen Rätsel auf

Wissenschaftler finden den bisher jüngsten Super-Jupiter, für den sie sowohl Masse als auch Größe messen konnten. Eine Forschergruppe um Olga Zakhozhay vom MPIA hat einen Riesenplaneten um den sonnenähnlichen Stern…

Im dynamischen Netz der Sonnenkorona

In der mittleren Korona der Sonne entdeckt ein Forscherteam netzartige, dynamische Plasmastrukturen – und einen wichtigen Hinweis auf den Antrieb des Sonnenwindes. Mit Hilfe von Messdaten der amerikanischen Wettersatelliten GOES…

Metall dringt tiefer in Auenböden ein als Plastik

Kunststoffe und Metalle verteilen sich unterschiedlich in den Böden von Flussauen: Während Plastikpartikel sich in den obersten Bodenschichten konzentrieren, finden sich Metalle bis in eine Tiefe von zwei Metern. Das…

Partner & Förderer