Besser gebündelt: Neues Prinzip zur Erzeugung von Röntgenstrahlung

An artist impression of X-rays (purple) emitted from the new type of X-ray source, where a layered structure which guides the beam is bombarded by electrons (yellow).
Credit: Julius Hilbig

Göttinger Physiker entwickeln Methode, bei der Strahlen durch „Sandwichstruktur“ simultan erzeugt und geleitet werden.

Röntgenstrahlung ist meist ungerichtet und schwer zu leiten. Röntgenphysiker der Universität Göttingen haben eine neue Methode entwickelt, mit der die Röntgenstrahlen genauer in eine Richtung abgestrahlt werden können. Dazu verwenden die Wissenschaftler eine Struktur von dünnen Schichten aus Materialien verschiedener Elektronendichte, um die erzeugten Strahlen gleichzeitig abzulenken und zu bündeln. Die Ergebnisse der Studie sind in der Fachzeitschrift Science Advances erschienen.

Für die Erzeugung von Röntgenstrahlung in gewöhnlichen Röntgenröhren prasseln Elektronen, die durch Hochspannung beschleunigt wurden, auf eine Metallanode. Durch die Atome im Metall werden die Elektronen in ihren „Bahnen“‘ abgelenkt und abgebremst, oder die Elektronen regen die Metallatome durch Stöße zur Abstrahlung an. Sowohl das Abbremsen der Elektronen als auch die Anregung der Metallatome führen dazu, dass Röntgenstrahlung ausgesandt wird. Leider wird die Strahlung in alle Richtungen gleichermaßen ausgesendet und lässt sich anschließend nur schwer wieder zu einem gerichteten Strahl bündeln. Außerdem sind die Wellenzüge der Röntgenstrahlung völlig zufällig und ungeordnet.

Physiker am Institut für Röntgenphysik der Universität Göttingen haben nun einen neuartigen Effekt beobachtet, wenn man die Anode durch eine geeignete Struktur von dünnen Schichten aus Materialien verschiedener Elektronendichte ersetzt. Dabei müssen die Schichtdicken der „Sandwichstruktur“ einige Millionstel Millimeter betragen. Wählt man eine besondere Abfolge der Schichten, so können die Röntgenstrahlen geleitet werden. „Prasseln die beschleunigten Elektronen auf diese Sandwichstruktur, so ändert sich das Winkelspektrum der erzeugten Röntgenstrahlung“, sagt Malte Vassholz, Erstautor der Arbeit, „die erzeugte Röntgenstrahlung wird gleichzeitig in eine bestimmte Richtung geleitet“.

Durch detaillierte numerische Rechnungen lassen sich die Ergebnisse im Modell nachvollziehen und für eine gegebene Wahl der Struktur berechnen. „Durch Optimierung der Struktur ließe sich der Effekt unseren Rechnungen nach weiter steigern und für die Erzeugung von Röntgenstrahlung mit höherer Brillanz nutzen“, ergänzt Prof. Dr. Tim Salditt. Dabei besteht die Hoffnung, dass Röntgenmessungen, die bislang nur an großen Beschleunigern wie dem Elektronensynchrotron in Hamburg möglich sind, zum Teil auch „ins Labor“ geholt werden können. „Besonders interessant sind Anwendungen der Röntgenbildgebung mikroskopisch kleiner und kontrastschwacher Objekte wie zum Beispiel weiche biologische Gewebe“, so Salditt.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Tim Salditt
Georg-August-Universität Göttingen
Institut für Röntgenphysik
Friedrich-Hund-Platz 1, 37077 Göttingen
Telefon: 0551 39 29918 / Sekr. 0551 39 25556
tsaldit@gwdg.de
www.roentgen.physik.uni-goettingen.de

Originalpublikation:

Malte Vassholz, Tim Salditt. Observation of electron-induced characteristic x-ray and bremsstrahlung radiation from a waveguide cavity. Science Advances (2021). Doi: https://doi.org/10.1126/sciadv.abd5677

https://www.uni-goettingen.de/de/3240.html?id=6145

Media Contact

Thomas Richter Öffentlichkeitsarbeit
Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Autonomes High-Speed-Transportfahrzeug für die Logistik von morgen

Schwarm-Logistik Das Fraunhofer-Institut für Materialfluss und Logistik IML entwickelt eine neue Generation fahrerloser Transportfahrzeuge: Der LoadRunner kann sich dank Künstlicher Intelligenz und Kommunikation über 5G im Schwarm organisieren und selbstständig…

Neue Möglichkeiten in der druckunterstützten Wärmebehandlung

Das Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM in Dresden verstärkt seine technologische Kompetenz im Bereich der druckunterstützten Wärmebehandlung mit der Neuanschaffung einer Quintus Hot Isostatic Press QIH 15L. Damit…

Virenfreie Luft durch neuartigen Raumlüfter

In geschlossenen Räumen ist die Corona-Gefahr besonders groß. Aerosole spielen eine entscheidende Rolle bei der Übertragung von Sars-CoV-2 und erhöhen die Konzentration der Corona-Viren in Büros und Co. Ein neuartiges…

Partner & Förderer