Wie schwer ist ein Neutrino?

Forschungszentrum Karlsruhe vor Großexperiment zur Bestimmung der Neutrino-Masse

Ein bedeutendes Experiment der physikalischen Grundlagenforschung steht am Forschungszentrum Karlsruhe in den Startlöchern: Im Laufe der kommenden fünf Jahre wird hier unter internationaler Beteiligung das Karlsruher Tritium Neutrino-Experiment KATRIN aufgebaut. Ziel des 25 Mio. DM teuren Vorhabens ist die Antwort auf eine der wichtigsten Fragen der modernen Physik: Wie schwer sind Neutrinos, die flüchtigsten aller Elementarteilchen? Sowohl für die Kosmologie als auch für die Hochenergiephysik wäre die Bestimmung der Neutrinomasse von größter Bedeutung.

Spätestens seit Juni dieses Jahres weiß man: Neutrinos haben eine Masse. Dies nämlich ist das Ergebnis einer Gruppe von amerikanischen, kanadischen und britischen Forschern. Sie untersuchten Neutrinos, die von der Sonne kommen und bewiesen dabei, dass sich verschiedene Arten von Neutrinos ineinander umwandeln können (so genannte Neutrino-Oszillationen). Das ist nur dann möglich, wenn die verschiedenen Neutrinosorten nicht alle die gleiche Masse haben.

Wie schwer die Neutrinos nun tatsächlich sind, konnten die Forscher mit ihrem Experiment aber nicht klären. Pionierexperimente der letzten Jahre an der Universität Mainz und am Institut für Nuklearforschung in Troitsk bei Moskau geben für das Elektron-Neutrino Obergrenzen um 2 Elektronenvolt an. (Zum Vergleich: Das Elektron, das leichteste Bauteil eines Atoms, ist mit einer Masse von 511 Elektronenvolt 250 mal schwerer.) Mit dem geplanten Experiment KATRIN kann die Neutrinomasse auch dann noch gemessen werden, wenn sie zehn mal kleiner als die bisherige Obergrenze ist.

KATRIN nutzt den Effekt, aufgrund dessen der Physiker Wolfgang Pauli das Neutrino schon 1931 vorhersagte (die erste direkte Messung gelang erst 1957): Beim Beta-Zerfall in Atomkernen wird ein Neutron in ein Proton und ein Elektron umgewandelt. Das entstehende Elektron hat aber keine feste Energie, sondern kann bis zu einer Obergrenze, die der gesamten freiwerdenden Energie entspricht, beliebige Energien haben. Da beim Beta-Zerfall eines bestimmten Atoms aber immer die gleiche Gesamtenergie frei wird, muss ein weiteres Teilchen den Energieunterschied zwischen der Elektronen- und der Gesamtenergie tragen: das Neutrino. Aus der genauen Beobachtung des Energiespektrums der Elektronen in der Nähe der Gesamtenergie kann nun auf die Neutrinomasse geschlossen werden. Wenn das Neutrino eine Masse hat und damit eine Mindestenergie mit sich trägt, wird das Spektrum gegenüber einer kontinuierlichen Energieverteilung modifiziert sein.

Als Beta-Strahler wird KATRIN Tritium verwenden, eine Form von Wasserstoff, die mit einer Halbwertszeit von 12,3 Jahren zerfällt. Beim Beta-Zerfall von Tritium wird eine Gesamtenergie von 18600 Elektronenvolt frei, die sich auf Elektron und Neutrino verteilt. Die Neutrinos sind nicht nachweisbar. Die Elektronen werden im Herzstück von KATRIN, einem riesigen elektrostatischen Spektrometer, auf ihre Energie untersucht und anschließend in einem Halbleiterdetektor nachgewiesen. Das zentrale Spektrometer wird einen Durchmesser von 7 Metern und eine Länge von 20 Metern haben, die Gesamtlänge des Experiments wird bei 60 Metern liegen.

„Im Forschungszentrum Karlsruhe gibt es ideale Voraussetzungen, um ein solches Großexperiment durchzuführen“, erläutert Johannes Blümer, Leiter des Instituts für Kernphysik im Forschungszentrum Karlsruhe und Professor am Institut für Experimentelle Kernphysik der Universität Karlsruhe. „Hier steht mit dem Tritium-Labor ein europaweit einzigartiges Laboratorium für die anspruchsvolle Tritiumhandhabung zur Verfügung. Außerdem gibt es langjährige Erfahrungen mit Hochvakuum und Kryotechnik in großen wissenschaftlichen Apparaturen und darüber hinaus das Know-how und die Infrastruktur für den Bau und Betrieb solcher Anlagen.“
Aus diesem Grund hat sich eine internationale Kollaboration, an der neben Hochschulen in Karlsruhe, Mainz und Fulda auch Forschungseinrichtungen in Tschechien (Prag), USA (Seattle) und Russland (Troitsk) beteiligt sind, für das Forschungszentrum Karlsruhe als Standort des Experiments entschieden. Weitere internationale Forschungsinstitute haben schon ihr Interesse an einer Zusammenarbeit bekundet.

Media Contact

Inge Arnold idw

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Krebsforscher trainieren weiße Blutkörperchen für Attacken gegen Tumorzellen

Wissenschaftler am Nationalen Centrum für Tumorerkrankungen Dresden (NCT/UCC) und der Hochschulmedizin Dresden konnten gemeinsam mit einem internationalen Forscherteam erstmals zeigen, dass sich bestimmte weiße Blutkörperchen – so genannte Neutrophile Granulozyten…

Molekularer Kompass für die Ausrichtung von Zellen

Auch Pflanzen haben Adern, die Nährstoffe durch ihren ganzen Körper transportieren. Die Organisation dieser Adern wird durch das Hormon Auxin gesteuert. Dieses wandert von Zelle zu Zelle und gibt ihnen…

Europäischer Innovationspreis EARTO 2020 für neuartiges Brandschutzgel

Das Fraunhofer UMSICHT hat zusammen mit dem Industriepartner Hörmann Glastechnik KG ein neuartiges Brandschutzgel und einen Produktionsprozess für feuerwiderstandsfähige Verglasung entwickelt. Dafür erhielt das Forscherteam den dritten Innovationspreis der European…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close