Vorstoß in die Welt des Nanomagnetismus: Neues Lorentz-Mikroskop

An der Universität Regensburg wurde ein neues „Lorentz-Elektronenmikroskop“ in Betrieb genommen und weiterentwickelt, das in seiner endgültigen Ausbaustufe ein weltweites Unikat darstellt: Damit können kleinste magnetische Partikel, die sich u.a. auch als Speicherzellen eignen, mit einer bislang unbekannten Präzision und Detailtreue untersucht werden.

Das TECNAI F30 (Lorentz)2 Regensburg Special, produziert durch die Fa. FEI nach Vorgaben eines Regensburger Wissenschaftlers und finanziert durch die Großgeräteinitiative der Deutschen Forschungsgemeinschaft, ermöglicht es den Regensburger Forschern, die „pole position“ bei der Untersuchung nanostrukturierter magnetischer Partikel einzunehmen. Derzeit gibt es weltweit kein vergleichbares Gerät!

Seit wenigen Jahren hat ein Wettlauf von Forschungsinstituten und Wirtschaftsunternehmen begonnen, der zum Ziel hat, die Geheimnisse des Magnetismus in Nanometer-Dimensionen zu lüften. Während bei den Forschungsinstituten vor allem die wissenschaftliche Herausforderung im Vordergrund steht, stehen bei den Unternehmen, in Deutschland z.B. vertreten durch die Fa. Infi-neon – natürlicherweise – finanzielle Erwartungen vorne an. Nanostrukturierte magnetische „Zellen“ (’dots’) haben das Potenzial welches für künftige Informationstechnologien gebraucht wird. Während ein „normaler“ Computer bei Stromausfall sein „Gedächtnis“ verliert, bleibt ein auf Magnetismus basierendes Gedächtnis auch dann erhalten – günstiger Nebenaspekt dabei: Speicherbausteine auf Magnet-Basis (sogenannte MRAMs) versprechen sogar um bis zu 100-fach schneller zu sein als herkömmliche Halbleiterspeicher, die sogenannten RAMs.

Wie viele Atome braucht man für einen Magneten?

Bereits jetzt vorliegende Ergebnisse erlauben tiefe Einblicke in das Verhalten kleiner magnetischer Teilchen: Magnetismus ist ein kollektives Phänomen, d.h. die Wechselwirkung vieler benachbarter Atome bestimmt, ob wir einen Stoff als „magnetisch“ oder „unmagnetisch“ wahrnehmen. Wird – wie im Fall kleiner magnetischer Teilchen – die Zahl der beteiligten Atome künstlich beschränkt, so kann es zu überraschendem Verhalten kommen. Das betrachtete Teilchen ändert in Abhängigkeit seiner Größe oder auch geometrischen Form sein mikromagnetisches Verhalten. Dies zu erforschen und für künftige High Tech-Produkte zu nutzen wird möglich durch den Einsatz des TECNAI F30 (Lorentz)2 Regensburg Special.

„Fangen“-Spielen mit magnetischen Wirbeln

Das gezielte Einbringen von „Störungen“ durch elektronenstrahl-lithografische Techniken erlaubt die gezielte Untersuchung des Einflusses von Geometrieeffekten auf das magnetische Verhalten. Magnetische Wirbel („vortices“) sind bewegliche magnetische Strukturen, die durch Magnetfelder verschoben werden können. Künstlich erzeugte kleine Löcher im Material bilden regelrechte Fallen, die solche Wirbel einfangen können. Mit Hilfe des differentiellen Phasenkontrast-Verfahrens lassen sich ganze Magnetismus-Landkarten kleiner magnetischer Teilchen erstellen, komplexe Strukturen werden direkt für das Auge sichtbar. Und mit Hilfe der Elektronenstrahl-Holografie können sogar magnetische Streufelder außerhalb von Materie sichtbar gemacht werden. Über solche Streufelder können benachbarte Speicherzellen gekoppelt sein, was schlimmstenfalls bei magnetischen Speicherzellen zu einem Dominoeffekt führen könnte.

Kontaktadresse:

Prof. Dr. Josef Zweck
Fakultät für Physik der Universität Regensburg
D-93040 Regensburg
Tel. (0941) 943 2590
E-Mail: Josef.Zweck@physik.uni-regensburg.de

Media Contact

Dr./M.A. Rudolf F. Dietze idw

Weitere Informationen:

http://www.uni-regensburg.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Was die Körnchen im Kern zusammenhält

Gerüst von Proteinflecken im Zellkern nach 100 Jahren identifiziert. Nuclear Speckles sind winzige Zusammenballungen von Proteinen im Kern der Zelle, die an der Verarbeitung genetischer Information beteiligt sind. Berliner Forschende…

Immunologie – Damit Viren nicht unter die Haut gehen

Ein Team um den LMU-Forscher Veit Hornung hat einen Mechanismus entschlüsselt, mit dem Hautzellen Viren erkennen und Entzündungen in Gang setzen. Entscheidend für die Erkennung ist eine typische Struktur der…

Kleine Moleküle steuern bakterielle Resistenz gegen Antibiotika

Sie haben die Medizin revolutioniert: Antibiotika. Durch ihren Einsatz können Infektionskrankheiten, wie Cholera, besser behandelt werden. Doch entwickeln die krankmachenden Erreger zunehmend Resistenzen gegen die angewandten Mittel. Nun sind Wissenschaftlerinnen…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close