Schwarze Löcher im Doppelpack

Abb. 2: Auf diesem Bild wurde die hochenergetische Röntgenstrahlung (blau), die von dem Paar Schwarzer Löcher im Kern der Galaxie NGC 6240 ausgeht, mit einer Aufnahme des Hubble-Weltraumteleskops (gelb) überlagert. <br>Graphik: NASA/MPE

Forscher beobachten zwei dieser Schwerkraftfallen im Zentrum einer Galaxie / Kandidaten für Gravitationswellen

Zum ersten Mal haben Wissenschaftler im Zentrum einer einzigen Galaxie ein Paar aktiver Schwarzer Löcher gefunden. Die Entdeckung gelang einem Team um Prof. Günther Hasinger und Dr. Stefanie Komossa, beide vom Max-Planck-Institut für extraterrestrische Physik in Garching bei München, mit dem amerikanischen Röntgensatelliten Chandra. Die Schwerkraftfallen im Herzen des Sternsystems NGC 6240 werden in einigen hundert Millionen Jahren miteinander verschmelzen und ein noch massiveres Schwarzes Loch bilden – ein Ereignis, das mit einem gigantischen Ausbruch an Gravitationswellen einhergehen sollte.

Die außerordentlich helle Galaxie NGC 6240, etwa 400 Millionen Lichtjahre von der Erde entfernt, bietet ein Musterbeispiel für die Kollision zweier Galaxien, die miteinander verschmelzen. Dies entfacht ein regelrechtes „Feuerwerk“ der Sternentstehung. Das Zentrum dieser Galaxie versteckt sich hinter Unmengen staubiger Gaswolken und ist deshalb mit optischen Teleskopen nicht sichtbar. Röntgenstrahlen dagegen durchdringen den Schleier von Gas und Staub.

Schon früher war aufgefallen, dass NGC 6240 hochenergetische Röntgenstrahlung produziert. Im Radiobereich, im Infrarotlicht sowie im optischen Fenster des Spektrums hatten Astronomen innerhalb dieses Sternsystems zwei helle Kerne aufgespürt, deren Natur jedoch rätselhaft blieb. „Mit Chandra hofften wir herauszufinden, welcher der beiden Kerne – wenn überhaupt – ein Schwarzes Loch enthält“, sagt Stefanie Komossa vom Max-Planck-Institut für extraterrestrische Physik und Erstautorin der Publikation, die demnächst in den Astrophysical Journal Letters erscheint. Der NASA-Satellit Chandra hatte NGC 6240 insgesamt 10,3 Stunden mit dem Advanced CCD Imaging Spectrometer (ACIS) überwacht.

„Zu unserer Überraschung stellten wir fest, dass beide Kerne aktive Schwarze Löcher beherbergen“, sagt Komossa. Die Entdeckung eines Paares Schwarzer Löcher bestätigt theoretische Modelle, nach denen solche Objekte in den Zentren von Galaxien durch Verschmelzung dramatisch anwachsen können. „Dies ist wichtig für unser Verständnis der Galaxiengeburt und -entwicklung.“

„Der Durchbruch gelang, weil Chandra ein scharfes Bild der zwei Kerne im Zentrum der Galaxie lieferte und gleichzeitig eine detaillierte Röntgendiagnose erlaubte“, sagt Günther Hasinger, Direktor am Max-Planck-Institut für extraterrestrische Physik und Co-Autor des Fachartikels. Nach Hasingers Worten hinterlassen die beiden aktiven „Massemonster“ eindeutige Fingerabdrücke: „Wir sehen einen Überschuss hochenergetischer Strahlung von heißem Gas, das um ein Schwarzes Loch wirbelt, sowie die charakteristische Fluoreszenzstrahlung von Eisenatomen in seiner Nähe.“

Die beiden Schwarzen Löcher in NGC 6240 sind derzeit noch etwa 3000 Lichtjahre voneinander entfernt. Im Lauf etlicher hundert Millionen Jahre werden sie sich, auf Spiralbahnen umeinander laufend, immer näher kommen und schließlich zu einem noch größeren Loch verschmelzen. Dieser Prozess endet mit einem gewaltigen Ausbruch von Gravitationswellen, die sich durch das gesamte Universum ausbreiten und dabei die Raumzeit kräuseln. Das bewirkt winzige Verzerrungen der Abstände im Raum.

Die Verschmelzung zweier supermassereicher Schwarzer Löcher wie in NGC 6240 sollte die stärksten messbaren Gravitationswellen-Signale im All erzeugen. Der gemeinsam von der europäischen Raumfahrtbehörde ESA und der amerikanischen NASA geplante, im Weltraum stationierte Detektor LISA (Laser Interferometer Space Antenna) wird nach solchen Ereignissen suchen, die sich vermutlich mehrere Male pro Jahr im Universum abspielen. „Zum ersten Mal haben wir nun ein doppeltes Schwarzes Loch in flagranti ertappt, das uns die Vorahnung eines gigantischen Ausbruchs von Gravitationswellen vermittelt“, freut sich Hasinger.

Neben Stefanie Komossa und Günther Hasinger gehören zum Team: Vadim Burwitz und Peter Predehl vom Max-Planck-Institut für extraterrestrische Physik, Jelle Kaastra von der Space Research Organization in den Niederlanden und Yasushi Ikebe von der University of Maryland in Baltimore.

Das Marshall Space Flight Center der NASA in Huntsville, Alabama, leitet das Chandra-Programm für das Office of Space Science in Washington. Die Firma TRW im kalifornischen Redondo Beach ist der Hauptauftragnehmer für den Satelliten. Das Smithsonian Chandra X-ray Center kontrolliert von Cambridge (Massachusetts) aus die wissenschaftlichen Operationen und den Flugbetrieb. Die deutschen Beiträge zu den Instrumenten an Bord von Chandra finanzierte das Deutsche Zentrum für Luft- und Raumfahrt (DLR).

Weitere Informationen erhalten Sie von:

Prof. Dr. Günther Hasinger
Max-Planck-Institut für extraterrestrische Physik
Giessenbachstraße
85748 Garching
Tel.: 089/30000-3402
Fax: 089/30000-3569
E-Mail: ghasinger@mpe.mpg.de

Dr. Stefanie Komossa
Max-Planck-Institut für extraterrestrische Physik
Giessenbachstraße
85748 Garching
Tel.: 089/30000-3577
Fax: 089/30000-3569
E-Mail: skomossa@mpe.mpg.de

Media Contact

Dr. Andreas Trepte Max-Planck-Gesellschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer