ALMA entdeckt kalten Staub um nächstgelegenen Stern

Diese künstlerische Darstellung zeigt, wie die neu entdeckten Gürtel aus Staub um den dem Sonnensystem nächsten Stern, Proxima Centauri, aussehen könnten. Durch ALMA-Beobachtungen konnten Forscher enthüllen, dass das Leuchten durch kalten Staub verursacht wird. Die Entfernung zwischen Proxima Centauri und dem Staubgürtel beziffern die Forscher auf das Ein- bis Vierfache der Entfernung zwischen Sonne und Erde. Darüber hinaus deuten die Daten auf einen noch kühleren Staubgürtel hin, der sich weiter außen befindet, was ein Hinweis auf ein kompliziertes Planetensystem sein könnte. Die Strukturen ähneln den deutlich größeren Gürteln im Sonnensystem und sind wohl aus Gesteins- und Eispartikeln entstanden, aus denen sich keine Planeten formen konnten. Die Darstellung ist nicht maßstabsgetreu – damit Proxima b klar erkennbar ist, wurde er größer und in größerer Entfernung zum Stern dargestellt, als es eigentlich der Fall ist. Herkunftsnachweis: ESO/M. Kornmesser

Proxima Centauri ist der Stern, der der Sonne am nächsten ist. Er ist ein lichtschwacher Roter Zwerg und liegt nur vier Lichtjahre entfernt im südlichen Sternbild Zentaur (lat. Centaurus). Er wird von dem erdgroßen Planeten Proxima b umrundet, der 2016 entdeckt wurde.

Damit ist Proxima b der uns nächstgelegene Planet außerhalb unseres eigenen Sonnensystems. In diesem System gibt es aber noch viel mehr zu entdecken als nur diesen einen Planeten. Die neuen Beobachtungen mit ALMA zeigen Emission von Wolken, die aus kaltem kosmischen Staub bestehen und den Stern umgeben.

Der Erstautor der neuen Studie, Guillem Anglada [1], vom Instituto de Astrofísica de Andalucía (CSIC) in Granada in Spanien, erklärt die Bedeutung dieses Funds: „Der Staub um Proxima ist von besonderer Bedeutung, da es nach der Entdeckung des erdähnlichen Planeten Proxima b der erste Hinweis darauf ist, dass es um den sonnennächsten Stern nicht nur einen einzigen Planeten, sondern ein ganzes Planetensystem gibt.

Staubgürtel sind die Überreste der Materie aus der Entstehung von Planetensystemen, aus denen sich keine größeren Körper gebildet haben. Die Partikel aus Gestein und Eis in diesen Gürteln unterscheiden sich in der Größe und reichen von winzigsten Staubkörnern, die einen Durchmesser von wenigen Millimetern haben, bis hin zu asteroidenähnlichen Körpern mit einem Durchmesser von mehreren Kilometern [2].

Der Staub scheint in einem Gürtel zu liegen, der sich von Proxima Centauri aus über mehrere hundert Millionen Kilometer erstreckt und eine Gesamtmasse von etwa einem Hundertstel der Erdmasse besitzt. Die Temperatur des Gürtels wird auf etwa –230°C geschätzt, vergleichbar mit dem Kuipergürtel im äußeren Sonnensystem.

In den ALMA-Daten gibt es auch Hinweise auf einen zweiten Gürtel aus noch kälterem Staub, der die etwa zehnfache Entfernung zu Proxima Centauri besitzt. Sollte das bestätigt werden können, wäre das eine faszinierende Erkenntnis, da der Gürtel durch die große Entfernung zu seinem Mutterstern, der kühler und lichtschwächer ist als unsere Sonne, einer extrem kalten Umgebung ausgesetzt wäre. Beide Gürtel liegen deutlich weiter vom Stern weg als der Planet Proxima b, der Proxima Centauri in nur vier Millionen Kilometern Abstand umkreist [3].

Anglada erklärt, welche Folgen die Entdeckung haben wird: „Dieses Ergebnis legt nahe, dass Proxima Centauri ein Mehrfachplanetensystem haben könnte, das in der Vergangenheit viele Wechselwirkungen erfuhr, durch die sich ein Staubgürtel bildete. Weiterführende Untersuchungen könnten Informationen liefern, wo weitere bisher unentdeckte Planeten zu finden sind.

Das Planetensystem von Proxima Centauri ist besonders interessant, weil es Pläne – wie das Starshot-Projekt – gibt, das System mit Mikrosonden direkt zu erkunden, die an lasergetriebenen Segeln angebracht sind. Für die Planung einer solchen Mission ist es daher unerlässlich, die Staubumgebung um den Stern genau zu kennen.

Koautor Pedro Amado, ebenfalls vom Instituto de Astrofísica de Andalucía, erklärt, dass die Beobachtung erst der Anfang ist: „Diese ersten Ergebnisse zeigen, dass ALMA Staubstrukturen erkennen kann, die Proxima umgeben. Weitere Beobachtungen werden uns ein detaillierteres Bild von Proximas Planetensystem geben. Zusammen mit der Erforschung protoplanetarer Scheiben um junge Sterne werden wir viele Prozesse, die zur Entstehung der Erde und des Sonnensystems geführt haben, enthüllen können. Was wir im Moment sehen können, ist nur der Anfang!

[1] Durch einen kosmischen Zufall trägt der Erstautor der Studie, Guillem Anglada, denselben Namen wie der Leiter des Astronomenteams, das Proxima Centauri b entdeckt hat, Guillem Anglada-Escudé, obwohl beide nicht miteinander verwandt sind. Guillem Anglada-Escudé ist ein Koautor des jetzt veröffentlichten Fachartikels.

[2] Proxima Centauri ist ein recht alter Stern und hat ein ähnliches Alter wie das Sonnensystem. Die Staubgürtel, die ihn umgeben, ähneln wahrscheinlich dem Reststaub im Kuipergürtel sowie dem Asteroidengürtel im Sonnensystem und dem Staub, durch den das sogenannte Zodiakallicht entsteht. Diese eindrucksvollen Scheiben, die ALMA um deutlich jüngere Sterne wie HL Tauri abbilden konnte, enthalten deutlich mehr Materie, aus der Planeten entstehen.

[3] Sollte seine Existenz bestätigt werden können, würde die scheinbare Form des sehr lichtschwachen äußeren Gürtels es Astronomen ermöglichen, die Neigung des Planetensystems Proxima Centauri abzuschätzen. Aufgrund seiner Neigung würde er elliptisch erscheinen, auch wenn er eigentlich kreisförmig ist. Das würde wiederum eine bessere Bestimmung der Masse des Planeten Proxima b ermöglichen, die derzeit nur als Mindestmasse bekannt ist.

Die hier präsentierten Forschungsergebnisse von Guillem Anglada et al. erscheinen demnächst unter dem Titel „ALMA Discovery of Dust Belts Around Proxima Centauri“ in der Fachzeitschrift Astrophysical Journal Letters.

Die beteiligten Wissenschaftler sind Guillem Anglada (Instituto de Astrofísica de Andalucía (CSIC), Granada, Spanien [IAA-CSIC]), Pedro J. Amado (IAA-CSIC), Jose L. Ortiz (IAA-CSIC), José F. Gómez (IAA-CSIC), Enrique Macías (Boston University, Massachusetts, USA), Antxon Alberdi (IAA-CSIC), Mayra Osorio (IAA-CSIC), José L. Gómez (IAA-CSIC), Itziar de Gregorio-Monsalvo (ESO, Santiago, Chile; Joint ALMA Oobservatory, Santiago, Chile), Miguel A. Pérez-Torres (IAA-CSIC; Universidad de Zaragoza, Spanien), Guillem Anglada-Escudé (Queen Mary University of London, Großbritannien), Zaira M. Berdiñas (Universidad de Chile, Santiago, Chile; IAA-CSIC), James S. Jenkins (Universidad de Chile, Santiago, Chile), Izaskun Jimenez-Serra (Queen Mary University of London, Großbritannien), Luisa M. Lara (IAA-CSIC), Maria J. López-González (IAA-CSIC), Manuel López-Puertas (IAA-CSIC), Nicolas Morales (IAA-CSIC), Ignasi Ribas (Institut de Ciències de l’Espai, Barcelona, Spanien), Anita M. S. Richards (JBCA, University of Manchester, Großbritannien), Cristina Rodríguez-López (IAA-CSIC) und Eloy Rodríguez (IAA-CSIC).

Die Europäische Südsternwarte (engl. European Southern Observatory, kurz ESO) ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Getragen wird die Organisation durch 16 Länder: Belgien, Brasilien, Dänemark, Deutschland, Finnland, Frankreich, Großbritannien, Italien, die Niederlande, Österreich, Polen, Portugal, Spanien, Schweden, die Schweiz und die Tschechische Republik. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO verfügt über drei weltweit einzigartige Beobachtungsstandorte in Chile: La Silla, Paranal und Chajnantor. Auf dem Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts und zwei Teleskope für Himmelsdurchmusterungen: VISTA, das größte Durchmusterungsteleskop der Welt, arbeitet im Infraroten, während das VLT Survey Telescope (VST) für Himmelsdurchmusterungen ausschließlich im sichtbaren Licht konzipiert ist. Die ESO ist außerdem einer der Hauptpartner bei zwei Projekten auf Chajnantor, APEX und ALMA, dem größten astronomischen Projekt überhaupt. Auf dem Cerro Armazones unweit des Paranal errichtet die ESO zur Zeit das Extremely Large Telescope (E-ELT) mit 39 Metern Durchmesser, das einmal das größte optische Teleskop der Welt werden wird.

Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsländern (und einigen weiteren Staaten) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie in Heidelberg.

Carolin Liefke
ESO Science Outreach Network – Haus der Astronomie
Heidelberg, Deutschland
Tel: 06221 528 226
E-Mail: eson-germany@eso.org

Guillem Anglada
Instituto de Astrofísica de Andalucía (CSIC)
Granada, Spain
E-Mail: guillem@iaa.es

Pedro J. Amado
Instituto de Astrofísica de Andalucía (CSIC)
Granada, Spain
E-Mail: pja@iaa.csic.es

Antxon Alberdi
Instituto de Astrofísica de Andalucía (CSIC)
Granada, Spain
E-Mail: antxon@iaa.es

Enrique Macias
Boston University
Boston, USA
E-Mail: emacias@bu.edu

Itziar de Gregorio-Monsalvo
ESO/ALMA
Santiago, Chile
Tel: +56 22 4676316
E-Mail: idegrego@eso.org

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Mobil: +49 151 1537 3591
E-Mail: rhook@eso.org

Connect with ESO on social media

Dies ist eine Übersetzung der ESO-Pressemitteilung eso1735.

Media Contact

Dr. Carolin Liefke ESO-Media-Newsletter

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Trends in Photonik und Quantentechnologien

FBH auf den Photonics Days 2024. Am 9. und 10. Oktober 2024 beteiligt sich das Ferdinand-Braun-Institut an den Photonics Days Berlin Brandenburg mit Vorträgen und der begleitenden Ausstellung. Zwei Tage…

Europas biologischer Vielfalt auf der Spur

Forschende aus 33 Ländern erstellen Referenzgenome von 98 Arten. Wissenschaftler:innen aus ganz Europa ist es im Rahmen des Pilotprojekts des European Reference Genome Atlas (ERGA) gelungen, hochwertige Referenzgenome für 98…

Zirkulär wirtschaften für eine verantwortliche Regionalentwicklung

IAT begleitet Fab.Region Bergisches Städtedreieck. Kann zirkuläre Wirtschaft helfen, unser Wirtschaftssystem umweltverträglicher und sozial gerechter zu machen? Die „Fabrication City“ – kurz „Fab City“ ¬– kann (fast) alles, was sie…

Partner & Förderer