Virtueller Hautkontakt

Doktorandin Sipontina Croce und Student Lukas Roth (r.) forschen an Folien, die Textilien neue Fähigkeiten verleihen. Smarte Arbeitshandschuhe werden ebenso möglich wie smarte „Uhren“, die virtuelle Berührungen spürbar machen.
Foto: Oliver Dietze / Universität des Saarlandes

Smarte Textilien machen Berührungen spürbar.

Smarte Textilien sollen ermöglichen, auch vom Körpergefühl her in die virtuelle Realität einzutauchen und Berührungen am eigenen Leib zu spüren. Eine hauchdünne Folie, die Berührungsempfindungen übertragen kann, macht dabei Stoffe zur zweiten, virtuellen Haut. Schwer kranken Kindern in Isolierstationen soll sie die Körpernähe ihrer Eltern bei computersimulierten Besuchen spürbar machen: Sie soll ihr Streicheln fühlbar übertragen.

Das Team der Professoren Stefan Seelecke und Paul Motzki von der Universität des Saarlandes stellt die Technologie hinter den smarten Textilien vom 22. bis 26. April auf der Hannover Messe vor (Halle 2 Stand B10).

Die Hand auf der Schulter, ein Streicheln am Arm, eine Umarmung: Solche Berührungen beruhigen, trösten, vermitteln Sicherheit, Geborgenheit und Nähe. Geben die Nervenzellen der Haut solche Reize weiter, werden blitzschnell viele Hirnbereiche aktiv und fachen die körpereigene Biochemie an. Hormone und andere Botenstoffe werden ausgeschüttet, darunter Oxytocin, das Wohlgefühl und Bindung entstehen lässt. Videokonferenzen dagegen lassen uns eher kalt, Geborgenheit und Nähe sind kaum zu spüren – es fehlt das Körperliche. Aber was, wenn Nähe wichtig ist, wenn Kinder schwer krank sind, aber die Eltern nicht zu ihnen können? Wenn Körperkontakt wegen eines geschwächten Immunsystems nicht sein darf?

Damit Kinder in Isolierstationen die Körpernähe ihrer Eltern auch bei virtuellen Besuchen spüren und möglichst realitätsnah in dieses Erlebnis eintauchen können, arbeitet an der Universität des Saarlandes, an der Hochschule für Technik und Wirtschaft des Saarlandes (htw saar), am Zentrum für Mechatronik und Automatisierungstechnik (ZeMA) und am Deutschen Forschungszentrum für Künstliche Intelligenz (DFKI) ein Forschungsteam über die Fachgrenzen hinweg zusammen. An der Schnittstelle von Ingenieurwissenschaft, Neurotechnologie, Medizin und Informatik entwickeln die Forscherinnen und Forscher im Projekt „Multi-Immerse“ eine virtuelle Begegnung, die alle Sinne ansprechen soll. „Immerse“ steht dabei für „Eintauchen“, für eine intensive Sinneswahrnehmung. Die jungen Patientinnen und Patienten sollen über neue Technologien ihre Eltern und Geschwister möglichst realitätsnah sehen, hören, fühlen und trotz der räumlichen Trennung dennoch ihre intensive Nähe spüren.

Für das Fühlen und die taktile Wahrnehmung zuständig ist dabei die Forschungsgruppe der Professoren Stefan Seelecke und Paul Motzki an der Universität des Saarlandes und am Saarbrücker ZeMA: Sie sind Spezialisten darin, Oberflächen mithilfe leichter Silikonfolien neuartige Fähigkeiten zu verleihen. Die Ingenieurinnen und Ingenieure machen die gerade mal 50 Mikrometer dünnen Folien zu einer zweiten Haut: Wie die Haut Schnittstelle des menschlichen Körpers zu seiner realen Außenwelt ist, soll die Folie seine Schnittstelle zur virtuellen Welt werden. Damit soll eine neue Körperwahrnehmung in der fiktiven Realität entstehen.

In einem Textil eingearbeitet, sollen die Folien die Berührungen auf die Haut des Kindes übertragen, die entstehen, wenn Mutter oder Vater andernorts über ein zweites smartes Textil streichen. „Wir nutzen dabei die Folien, sogenannte dielektrische Elastomere, als Sensoren, um die Berührungsbewegungen zu erfassen, und zugleich auch als Aktoren, also Antriebe, um diese Bewegungen weiterzugeben“, erklärt Stefan Seelecke, Professor für intelligente Materialsysteme. Die Folie erkennt als Sensor wie genau Hand und Finger die Folie beim Darüberstreichen eindrücken, eindellen und dehnen. Exakt diese Deformation, die durch die Berührungsbewegungen entsteht, imitiert die Folie in einem zweiten Textil auf der Haut des Kindes, um so etwa auf dem Arm den Eindruck eines Darüberstreichens zu vermitteln.

„Die Ober- und Unterseite der Folie sind mit einer leitfähigen, hochdehnbaren Elektrodenschicht bedruckt. Wenn wir hieran eine elektrische Spannung anlegen, ziehen sich die Elektroden durch die elektrostatische Anziehung an und stauchen die Folie, die zur Seite ausweicht und dabei ihre Fläche vergrößert“, erklärt Professor Paul Motzki die Technologie, der die Brückenprofessur „Smarte Materialsysteme für innovative Produktion“ zwischen Universität des Saarlandes und ZeMA innehat. Bei jeder kleinsten Bewegung ändert sich hierbei die elektrische Kapazität der Folie: eine physikalische Größe, die gemessen werden kann. Streicht also ein Finger über die Folie, verformt er diese und jeder einzelnen Stellung lässt sich ein exakter Messwert der elektrischen Kapazität zuordnen: Eine bestimmte Zahl beschreibt eine ganz bestimmte Stellung der Folie. Eine Abfolge dieser einzelnen Messwerte setzt einen Bewegungsablauf in Gang. Die Folie ist damit ihr eigener dehnbarer Sensor, der selbst erkennt, wie sie verformt wird.

Mit den Messwerten der einzelnen Verformungen können die Forscher etwa Streichelbewegungen durch das smarte Textil auf den Arm des Kindes übertragen. Sie können die Folie auch gezielt ansteuern. Durch intelligente Algorithmen lassen sich in einer Regelungseinheit Bewegungsabläufe vorausberechnen und programmieren. „Wir können die Folie stufenlos Hubbewegungen vollführen lassen, so dass es sich wie ansteigender Druck anfühlt oder auch eine bestimmte Position halten“, erklärt Doktorandin Sipontina Croce, die im Projekt forscht. Aber auch Klopfbewegungen sind möglich. Frequenz und Schwingungen können die Forscherinnen und Forscher beliebig verändern.

Auf der Hannover Messe demonstriert das Team seine Technologie mit einer „Uhr“, auf deren Rückseite eine smarte Folie angebracht ist. „Wir können mehrere solcher smarter Bausteine aneinanderreihen, so dass zum Beispiel eine lange Streichbewegung übertragen werden kann. Hierzu vernetzen wir diese Bausteine, so dass sie wie ein Schwarm untereinander kommunizieren und kooperieren“, erklärt Paul Motzki.

Das Verfahren ist günstig, leicht, geräuschlos und energieeffizient. Die Folientechnologie kann auch bei Computerspielen das Spielerlebnis durch eine realistische Körperwahrnehmung intensiver machen. In anderen Projekten kleiden die Ingenieure mit ihren Folien Arbeitshandschuhe für die Industrie 4.0 aus oder lassen den Eindruck von Knopfkanten entstehen, so dass aus dem Nichts heraus Tasten oder Schieberegler spürbar werden, wodurch sie Bedienoberflächen nutzerfreundlicher machen.

Auf der Hannover Messe zeigen die Saarbrücker Expertinnen und Experten für intelligente Materialsysteme weitere Entwicklungen mit dielektrischen Elastomeren: so zum Beispiel weitere smarte Textilien wie sensorische Shirts oder Schuhsohlen, auch Pumpen und Vakuumpumpen sowie Hochleistungsaktoren.

Hintergrund:
Im Rahmen des EFRE-Projektes „Multi-Immerse“, das Professorin Martina Lehser (Hochschule für Technik und Wirtschaft des Saarlandes htw saar/ZeMA) leitet, arbeiten am Center for Digital Neurotechnologies Saar (CDNS) auf dem Medizin-Campus Homburg die Universität des Saarlandes, die htw saar und das Zentrum für Mechatronik und Automatisierungstechnik (ZeMA) zusammen. Außer Professorin Martina Lehser und den Professoren Stefan Seelecke und Paul Motzki sind beteiligt von der Medizinischen Fakultät der Universität des Saarlandes Professor Daniel Strauss (Direktor der Systems Neuroscience & Neurotechnology Unit), Professor Michael Zemlin (Direktor der Universitätskinderklinik), Professorin Eva Möhler (Direktorin der Universitätsklinik für Kinder- und Jugendpsychatrie) sowie Informatiker der Universität des Saarlandes (Professor Jürgen Steimle) und des Deutschen Forschungszentrums für Künstliche Intelligenz (DFKI).

An der Technologie der dielektrischen Elastomere forschen im Team der Professoren Stefan Seelecke und Paul Motzki auch viele Nachwuchs-Wissenschaftlerinnen und -Wissenschaftler im Rahmen mehrerer Doktorarbeiten. Sie ist Gegenstand zahlreicher Veröffentlichungen in Fachzeitschriften und wurde in mehreren Forschungsprojekten gefördert: unter anderem von der EU im Rahmen eines Marie-Curie Research Fellowships, von der saarländischen Landesregierung im Rahmen der EFRE-Projekte iSMAT und Multi-Immerse sowie unter anderem auch durch die MESaar im Rahmen eines Promotionskollegs. Die Forscher wollen die Ergebnisse ihrer anwendungsorientierten Forschung in die Industriepraxis bringen. Hierzu haben sie aus dem Lehrstuhl heraus die Firma mateligent GmbH gegründet.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Stefan Seelecke, Lehrstuhl für intelligente Materialsysteme
+49 (681) 302-71341; stefan.seelecke@imsl.uni-saarland.de
Prof. Dr. Paul Motzki, Professur Smarte Materialsysteme für innovative Produktion, +49 (681) 85787-545; paul.motzki@uni-saarland.de

Weitere Informationen:

https://zema.de/projekt/immersive-mixed-reality/

https://www.uni-saarland.de/aktuell/hannover-messe-smarte-textilien-30945.html

Media Contact

Claudia Ehrlich Pressestelle der Universität des Saarlandes
Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ultraleichte selbstglättende Spiegel

…erhöhen die Effizient hochmoderner Teleskope. Schon immer faszinierte den Menschen der Blick in den Sternenhimmmel und nicht minder faszinierend ist es, die Erde aus dem Weltraum zu betrachten. Möglich ist…

Überraschende Umkehr in Quantensystemen

Forschende haben topologisches Pumpen in einem künstlichen Festkörper aus kalten Atomen untersucht. Die Atome wurden mit Laserstrahlen gefangen. Überraschenderweise kam es zu einer plötzlichen Umkehr der Atome an einer Wand…

Magnetisch durch eine Prise Wasserstoff

Neue Idee, um die Eigenschaften ultradünner Materialien zu verbessern. Magnetische zweidimensionale Schichten, die aus einer oder wenigen Atomlagen bestehen, sind erst seit kurzem bekannt und versprechen interessante Anwendungen, zum Beispiel…

Partner & Förderer