Neue Materialien zur Konstruktion zweidimensionaler Quasikristalle

Rastertunnelmikroskopische Aufnahme des quasikristallinen Netzwerks Bild: J. I. Urgel / TUM

Als der Physiker Daniel Shechtman 1982 die Ergebnisse seines letzten Experimentes ansah, war er so überrascht, dass er verblüfft drei Fragezeichen in sein Laborbuch notierte. Vor ihm lag ein kristallines Muster, das zu dieser Zeit als unmöglich galt.

Denn nach der seinerzeit kanonischen Lehrmeinung weisen Kristalle immer eine sogenannte Translationssymmetrie auf. Sie bestehen aus einer einzigen Grundeinheit, der sogenannten Elementarzelle, die sich in allen Raumrichtungen immer wieder genau gleich wiederholt.

Shechtmans Muster jedoch wies zwar auf eine globale Symmetrie hin, jedoch ließen sich die einzelnen Bausteine nicht durch einfache Verschiebung aufeinander abbilden – der erste Quasikristall war entdeckt. Trotz teilweiser massiver Kritik namhafter Kollegen hielt Shechtman unbeirrt an seinem Konzept fest und revolutionierte so das wissenschaftliche Verständnis von Kristallen und Festkörpern.

2011 wurde er dafür schlussendlich mit dem Nobelpreis für Chemie ausgezeichnet. Unter welchen Bedingungen und auf Grund welcher Mechanismen die faszinierenden Strukturen jedoch entstehen, bleibt bis heute jedoch vielfach ein Rätsel.

Ein neuer Baukasten für Quasikristalle

Nun haben Wissenschaftler um Wilhelm Auwärter und Johannes Barth, Professoren am Lehrstuhl für Oberflächenphysik der TU München in Zusammenarbeit mit der Hong Kong University of Science and Technology (HKUST, Prof. Nian Lin et al.) und dem spanischen Forschungsinstitut IMDEA Nanoscience eine neue Grundlage zum Bau zweidimensionaler Quasikristalle entwickelt, die sie dem Verständnis der wundersamen Muster einen großen Schritt näher bringt.

Im Rahmen eines Forschungsaufenthaltes an der HKUST gelangen dem TUM Doktoranden José Ignacio Urgel dabei die bahnbrechenden Messungen. „Wir besitzen nun ein neues Set an Bausteinen, aus denen wir viele verschiedene neue quasikristalline Strukturen bauen können“, erklären die TUM Physiker. „Diese Vielfalt eröffnet uns neue Möglichkeiten zu untersuchen, wie Quasikristalle entstehen.“

Den Forschern war es gelungen Europium – ein Metallatom aus der Klasse der Lanthanoide – mit organischen Verbindungen zu verknüpfen und so einen zweidimensionalen Quasikristall zu bauen, der sich potentiell sogar zu einem dreidimensionalen Quasikristall erweitern lässt. Bislang hatten Wissenschaftler aus metall-organischen Netzwerken zwar sehr viele periodische, teilweise hochkomplexe Strukturen bauen können, jedoch noch nie einen Quasikristall.

Die neue Netzwerkgeometrie konnten die Forscher mit Hilfe eines Rastertunnelmikroskops zudem in einmalig hoher Auflösung detailliert aufklären. Es zeigte sich ein Mosaik aus vier verschiedenen Grundelementen, die aus Drei- und Vierecken aufgebaut und unregelmäßig auf einem Substrat verteilt sind. Dabei lagern sich bestimmte dieser Grundelemente zu regulären 12-Ecken zusammen, die sich jedoch nicht durch parallele Verschiebung aufeinander abbilden lassen. Es entsteht ein komplexes Muster, ein kleines Kunstwerk auf atomarer Ebene das eine dodekagonale Symmetrie aufweist.

Interessante optische und magnetische Eigenschaften öffnen neue Türen

In zukünftigen Arbeiten planen die Forscher zunächst, die Wechselwirkungen der Metallzentren mit ihren Verbindungsstücken mit Hilfe von Computersimulationen und im Experiment zu variieren um zu verstehen, unter welchen Bedingungen sich zweidimensionale Quasikristalle bilden. Dieses Verständnis könnte helfen, in Zukunft gezielt neue quasikristalline Schichten zu entwickeln.

Solche Materialien sind vielversprechend. Denn die neuen metall-organischen quasikristallinen Netzwerke könnten Eigenschaften besitzen, die sie für viele verschiedene Anwendungsgebiete interessant machen. „Wir haben uns nun eine neue Spielwiese erschlossen, auf der wir nicht nur Quasikristallinität erforschen, sondern auch neue Funktionalitäten erschaffen können, vor allem in den Bereichen Optik und Magnetismus“, sagt Dr. David Écija vom IMDEA Nanoscience.

Zum einen könnten Wissenschaftler mit der neuen Methodik einmal gezielt quasikristalline Beschichtungen schaffen, die Photonen so beeinflussen, dass sie besser weitergeleitet oder nur bestimmte Wellenlängen durch das Material durchgelassen werden.

Außerdem könnten die Wechselwirkungen der Lanthanid-Bausteine in den neuen Quasikristallen helfen, magnetische Systeme mit ganz besonderen Eigenschaften zu entwickeln: Sogenannte „frustrierte Systeme“. Hier „stören“ sich die einzelnen Atome eines Kristallgitters so, dass an einem Gitterpunkt kein Energieminimum erreicht werden kann. Die Folge sind exotische magnetische Grundzustände, die beispielsweise als Informationsspeicher für künftige Quantencomputer erforscht werden.

Die Forschungsarbeit wurde unterstützt vom European Research Council (Advanced Grant MolArt), dem spanischen Ramón und Cajal Programm, der Comunidad de Madrid, dem Hong Kong Research Grants Council und dem TUM-HKUST Sponsorship Scheme for Targeted Strategic Partnerships.

Publikation:

Jóse I. Urgel, David Écija, Ran Zhang, Carlos-Andres Palma, Willi Auwärter, Nian Lin and Johannes V. Barth, Quasicrystallinity expressed in two-dimensional coordination lattices,
Nature Chemistry
Link: http://www.nature.com/nchem/journal/v8/n7/abs/nchem.2507.html

Kontakt:

Prof. Dr. Wilhelm Auwärter & Prof. Dr. Johannes V. Barth
Technische Universität München
James-Franck Straße 1, 85748 Garching, Germany
Tel.: +49 89 289 12399 – E-Mail: wau@tum.de
Web: http://www.e20.ph.tum.de

Media Contact

Dr. Ulrich Marsch Technische Universität München

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Entwicklung von High-Tech Tech-Schattenmasken für höchsteffiziente Si-Solarzellen

Das Technologieunternehmen LPKF Laser & Electronics AG und das Institut für Solarenergieforschung Hameln (ISFH) haben einen Kooperationsvertrag vereinbart: Gemeinsam werden sie Schattenmasken aus Glas von LPKF zur kostengünstigen Herstellung hocheffizienter…

Hitzewellen in den Ozeanen sind menschgemacht

Hitzewellen in den Weltmeeren sind durch den menschlichen Einfluss über 20 Mal häufiger geworden. Das können Forschende des Oeschger-Zentrums für Klimaforschung der Universität Bern nun belegen. Marine Hitzewellen zerstören Ökosysteme…

Was Fadenwürmer über das Immunsystem lehren

CAU-Forschungsteam sammelt am Beispiel von Fadenwürmern neue Erkenntnisse über die Regulation der angeborenen Immunantwort. Alle höheren Lebewesen verfügen über ein Immunsystem, das als biologischer Abwehrmechanismus den Körper vor Krankheitserregern und…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close