Die Fledermaus steht Pate bei der Digitalen Transformation

Umgebautes Messgerät
(c) Fraunhofer IPA

Ressourcen sparen mit dem virtuellen Lacklabor.

Digitale Simulationen statt Trial and Error: Im Projekt PaintVisco modellieren Forschende am IPA die Entwicklung und Verarbeitung von Lacken. Die Daten dafür liefert ein neu konzipiertes Rheometer, mit dem sich erstmals exakt die viskoelastischen Eigenschaften von Lacken beim Trocknen und Aushärten messen lassen – Vorbild bei der Technologie-Entwicklung war dabei die Echo-Ortung der Fledermaus.

Wie lange bleibt der Lack fließfähig? Wie gut gleicht er Unebenheiten aus? Unter welchen Bedingungen bildet sich die gewünschte, spiegelglatte Oberfläche? »Bisher mussten Lackierer in kosten- und zeitintensiven Trial-and-Error-Versuchen ausprobieren, wann eine Lackschicht optimal verläuft«, erklärt Dr. Fabian Seeler. Im Projekt PaintVisco hat er jetzt ein Simulationsprogramm erarbeitet, mit dem sich die Eigenschaften von Lacken virtuell bestimmen lassen.

Die Entwicklung des Computermodells war für den IPA-Forscher und sein Team eine echte Herausforderung, denn Lacke sind viskoelastisch. Dies bedeutet, dass sie – abhängig von Zeit und Temperatur – ihre Eigenschaften verändern: Zunächst verhalten sie sich eher wie Flüssigkeiten, später eher wie Feststoffe. Die Viskoelastizität wiederum ist entscheidend für die Prognose des Verlaufs, also der Fähigkeit eines Lacks, Unebenheiten auszugleichen – das können oberflächliche Pinselspuren sein, aber auch Poren, Wellenstrukturen und Kanten unter der Lackschicht.

Eine neue Messtechnik liefert die Daten

Vorbild Natur: Wie die Fledermaus arbeitet das PaintVisco-Rheometer mit fließend ineinander übergehenden Frequenzen. Variiert werden dabei allerdings nicht Ultraschall-Rufe, sondern die Frequenzen, mit denen die Lackprobe verformt wird.
(c) Dietmar Nill

Um dieses sehr komplexe Verhalten von Lacken zu simulieren, braucht man eine Fülle von Daten. Die Messgeräte, die diese liefern sollen, heißen Rotationsrheometer. Sie ermitteln die Fließfähigkeit von Lacken, indem sie eine dünne flüssige Lackprobe mit einer aufgesetzten Scheibe in Drehung oder Schwingung versetzen und dann messen, welche Kraft für die Verformung nötig ist. »Bisherige Geräte verhindern jedoch das Abdampfen der Lösungsmittel, die Ergebnisse sind daher für die Lackindustrie nur eingeschränkt aussagekräftig. Außerdem zeigen solche Messungen immer nur einen kleinen willkürlich gewählten Ausschnitt aus dem Materialverhalten, da oft nur mit einer einzigen Schwingungsfrequenz gemessen wird«, berichtet Seeler. Für rechnerische Verlaufsprognosen benötige man jedoch sehr viel umfangreichere Informationen über das Materialverhalten, beispielsweise das Verhalten einer Lackprobe bei zahlreichen Frequenzen.

Gemeinsam mit seinem Team hat er eine neue Messtechnik entwickelt. Dabei stand die Natur Pate: »Das Messprinzip haben wir bei der Fledermaus abgeguckt«, erinnert sich der Forscher. Die Fledermaus nutzt kurze Ultraschall-Rufe für die Orientierung: Jeder Ruf enthält – fließend ineinander übergehende – niedrige und hohe Frequenzen, die von der Umgebung reflektiert werden. Am Echo erkennt die Fledermaus beispielsweise, wo sich Hindernisse oder Beutetiere befinden. Indem der Ruf wiederholt wird, kann die Fledermaus verfolgen, wie sich der Abstand zu einem Hindernis mit der Zeit verändert oder wie sich das Beutetier bewegt.

Das PaintVisco-Rheometer arbeitet, wie die Fledermaus, mit fließend ineinander übergehenden Frequenzen. Variiert werden dabei allerdings nicht Ultraschall-Rufe, sondern die Frequenzen, mit denen die Lackprobe verformt wird. Durch Wiederholung der Abfolge von Frequenzen lässt sich die Veränderung der viskoelastischen Lackeigenschaften beim Abbinden erfassen. Durch diese besondere Signalform sei es möglich, alle für die Verlaufsprognose benötigten Daten innerhalb kürzester Zeit zu ermitteln, betont Seeler.

Mit der neuen Messtechnik können die Forschenden am IPA jetzt auch die für die Industrie so wichtige Lösemittelverdunstung berücksichtigen: In ihrem Rheometer wird die Lackschicht nicht mehr durch eine geschlossene Scheibe, sondern durch eine Konstruktion aus mehreren Ringen verformt. Die Öffnungen zwischen den Ringen erlauben es dem Lösemittel, zu verdunsten.

»Unsere Messungen haben gezeigt, dass sich mit der multifrequenten Messtechnik die Veränderung der viskoelastischen Eigenschaften der Lackschicht über den gesamten Lackierprozess – vom Auftragen über das Trocknen bei Raumtemperatur bis zum Vernetzen in einem Ofen – ermitteln lässt«, berichtet Seeler. »Mithilfe dieser Daten können wir jetzt nicht nur die Veränderungen der verlaufsbestimmenden Materialeigenschaften einer Lackschicht während des Abbindens nachvollziehen, sondern auch digitale Verlaufsprognosen erstellen und optimierte Lackeigenschaften ableiten – egal ob die Lackoberflächen mit dem Pinsel oder mit einem Zerstäuber erzeugt wurden.«

Simulationen, die Ressourcen sparen

Die Entwicklung und Einführung eines neuen Lackes dauert mehrere Jahre und verursacht Kosten im Millionenbereich. Die PaintVisco-Simulationen können künftig Hersteller dabei unterstützen, den Verlauf ihrer Lacke schon im Entwicklungsstadium zu optimieren, neue Produkte schneller auf den Markt zu bringen und diese mit Zusatzinformationen für Anwender zu versehen. Detaillierte Angaben würden den Lackierbetrieben helfen, teure Testläufe einzusparen und auf diese Weise schneller optimale Ergebnisse zu erzielen – Vorteile, die in Zeiten von steigenden Gas- beziehungsweise Strompreisen und Personalmangel wettbewerbsentscheidend sein können.

Auszeichnungen

Preise unterstreichen bereits, wie groß die Bedeutung der Projektergebnisse für die Industrie ist. Dr. Fabian Seeler betreute die studentische Abschlussarbeit von Nicolas Keinath. Sie wurde mit dem vom Lackhersteller Mankiewicz gestifteten Absolventenpreis der Hochschule Esslingen ausgezeichnet. Zusammen mit Dr. Oliver Tiedje erhielt Seeler außerdem den Lackchemie-Preis der Gesellschaft Deutscher Chemiker.

Projekt PaintVisco (01.01.2020 bis 30.06.2022)
Das Projekt wurde über die Forschungsgesellschaft für Pigmente und Lacke e. V. (FPL) bei der Arbeitsgemeinschaft industrieller Forschungsvereinigungen »Otto von Guericke« e. V. (AiF) als industrielle Gemeinschaftsforschung (IGF) eingereicht und vom Bundesministerium für Wirtschaft und Klimaschutz (BMWK) unter dem Förderkennzeichen 20994 N gefördert. 20 teilnehmende Firmen haben Rohstoffe, Recherchen, Geräte, Software und Messergebnisse beigesteuert.

Weitere Informationen:
Fabian Seeler, Oliver Tiedje (Betreuer), Numerische und experimentelle Untersuchung des Lackfilmverlaufs, Paderborn, Diss., 2021:
https://digital.ub.uni-paderborn.de/hs/content/titleinfo/5058228

Pressekommunikation
Jörg-Dieter Walz | Telefon +49 711 970-1667 | joerg-dieter.walz@ipa.fraunhofer.de

Wissenschaftliche Ansprechpartner:

Dr. Fabian Seeler
Telefon +49 711 970-1967 | fabian.seeler@ipa.fraunhofer.de | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA | www.ipa.fraunhofer.de

Media Contact

Jörg Walz Presse- und Öffentlichkeitsarbeit
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Funktionsweise von Adrenalin-bindendem Rezeptor entschlüsselt

Leipziger Biophysiker verfolgen Mechanismus der Signalübertragung im Körper nach. G-Protein-gekoppelte Rezeptoren (GPCR) sind im menschlichen Körper allgegenwärtig und an vielen komplexen Signalwegen beteiligt. Trotz ihrer Bedeutung für zahlreiche biologische Vorgänge…

Eine Alternative für die Manipulation von Quantenzuständen

Forschende der ETH Zürich haben gezeigt, dass man die Quantenzustände einzelner Elektronenspins durch Elektronenströme mit gleichmässig ausgerichteten Spins kontrollieren kann. Diese Methode könnte in Zukunft in elektronischen Schaltelementen eingesetzt werden….

Neue Einblicke in das Entstehen kleinster Wolkenpartikel in der Arktis

Ny-Ålesund (Spitzbergen). Mobile Messgeräte ermöglichen die Untersuchung von atmosphärischen Prozessen in höheren Luftschichten, die von klassischen Messstationen am Boden bisher nicht erfasst werden. Die luftgetragenen Flugsysteme leisten somit einen wichtigen…

Partner & Förderer