Destabilisierung macht Holz stabiler – Das Holz-Paradoxon

Ein Velohelm aus delignifiziertem Holz: Die Designerin Meri Zirkelbach hat sich in ihrer Masterarbeit mit konkreten Produktideen beschäftigt. Bild: Empa/ETH

Holz ist einer der ältesten Werkstoffe der Welt. Holz ist leicht, hat hervorragende mechanische Eigenschaften, wächst nach – und bindet dabei erst noch CO2. Insbesondere die letzten beiden Eigenschaften werfen vor dem Hintergrund der aktuellen Klima-diskussion die Frage auf, wie Holz noch mehr und besser genutzt werden kann.

Seit Jahren geht die Forschungsgruppe von Ingo Burgert an der Empa und der ETH Zürich dieser Frage nach. Ihr Ziel: die natürlichen Eigenschaften von Holz verbessern und mit neuen Funktionen ausstatten, um dadurch das Anwendungsspektrum von Holz zu erweitern.

Gemeinsam mit Tanja Zimmermann, der heutigen Leiterin des Empa-Departements «Functional Materials», hat Ingo Burgert in der Unit «Vision Wood» im Experimentalgebäude NEST bereits für verblüffende Holzobjekte gesorgt: Türgriffe aus antimikrobiellem Holz, mineralisiertes Holz für verbesserten Flammwiderstand oder eine Pinnwand aus magnetisiertem Holz sind einige Beispiele.

Während man für die ersten beiden Beispiele nach rund drei Jahren Praxistest in der Studentenwohnung «Vision Wood» ein positives Fazit ziehen kann, gibt es beim Letztgenannten noch Luft nach oben. Die jüngsten Forschungsarbeiten der Gruppe «Wood Materials Science» der ETH Zürich und der Empa eröffnen dazu nun neue Möglichkeiten:

«Wir haben einen Weg gefunden, wie wir die mechanischen Eigenschaften von Holz deutlich verbessern und gleichzeitig das Holz noch einfacher mit neuen Eigenschaften ausstatten können», sagt Burgert.

Flexibel im nassen, stabil im trockenen Zustand

Der Weg führt über eine Delignifizierung und Verdichtung des Holzes. Chemisch besteht Holz im Wesentlichen aus drei Bestandteilen: Zellulose, Hemizellulose und Lignin. Das Lignin sorgt dafür, dass die langen Zellulosefibrillen stabilisiert werden und nicht knicken. «Mit Hilfe von Säure lösen wir genau dieses Lignin aus dem Holz und entfernen damit den natürlichen Klebstoff», erklärt Marion Frey, die in Burgerts Team zurzeit promoviert.

Resultat: Das Holz – oder vielmehr die verbleibende, weisse Zellulose – lässt sich im nassen Zustand einfach in jede X-beliebige Form bringen. Zwischen den Zellen, wo einst Lignin für Stabilität gesorgt hat, verteilt sich dann Wasser, löst die Zellverbindungen auf und sorgt für Verformbarkeit. Trocknet man das delignifizierte Holz, verhaken sich die Zellen ineinander, und dies führt zu wiederum stabilen Verbindungen.

Durch Pressen wird das Material zusätzlich verdichtet, so dass die Forschenden letztlich ein Material in ihren Händen halten, das rund dreimal steifer und zugfester war als naturbelassenes Fichtenholz. Eine wasserabweisende Beschichtung kann ausserdem dafür sorgen, dass das Holz- innere nicht mehr feucht werden kann, und damit die gewünschte Form behält.

Einfachere Funktionalisierung

Die Entfernung des Lignins aus dem Holz hat neben der Verformbarkeit einen weiteren Effekt: Es führt zu einer höheren Porosität. «Das ist ein grosser Vorteil für die Funktionalisierung von Holz. Weil zwischen den Zellen und in den Zellwänden mehr Raum zur Verfügung steht, ist es einfacher, weitere Stoffe in die Holzstruktur einzubringen, die dem modifizierten Holz neue Eigenschaften verleihen», sagt Tobias Keplinger. Zur Magnetisierung von Holz wird beispielsweise Eisenoxid eingebracht. In ihren Experimenten konnten bereits erste Produktideen umgesetzt. Entstanden sind etwa ein Velohelm, die Innenverkleidung einer Autotür und der Seitenspiegel eines Fahrzeugs.

Mehr Informationen zum Thema finden Sie unter: www.empa.ch/web/s302/

Prof. Dr. Ingo Burgert
Cellulose & Wood Materials
Tel. +41 58 765 44 34
Ingo.Burgert@empa.ch

http://www.empa.ch/web/s302/

Media Contact

Rémy Nideröst Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Die ungewisse Zukunft der Ozeane

Studie analysiert die Reaktion von Planktongemeinschaften auf erhöhtes Kohlendioxid Marine Nahrungsnetze und biogeochemische Kreisläufe reagieren sehr empfindlich auf die Zunahme von Kohlendioxid (CO2) – jedoch sind die Auswirkungen weitaus komplexer…

Neues Standardwerkzeug für die Mikrobiologie

Land Thüringen fördert neues System zur Raman-Spektroskopie an der Universität Jena Zu erfahren, was passiert, wenn Mikroorganismen untereinander oder mit höher entwickelten Lebewesen interagieren, kann für Menschen sehr wertvoll sein….

Hoher Schutzstatus zweier neu entdeckter Salamanderarten in Ecuador wünschenswert

Zwei neue Salamanderarten gehören seit Anfang Oktober 2020 zur Fauna Ecuadors welche aufgrund der dort fortschreitenden Lebensraumzerstörung bereits bedroht sind. Der Fund ist einem internationalen Team aus Wissenschaftlerinnen und Wissenschaftlern…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close