Abwärme zum Rechnen nutzen

Informationssignale sind als thermischen Spinwellen (rote Pfeile) kodiert. Logische Operationen werden mit zwei Magnetstreifen(Signalleitern) realisiertund mit Strompuls in einem Abstandshalter (Platin) präzise gesteuert.
Foto: AG Berakdar

Durch eine geschickte Kombination verschiedener Materialien lässt sich die Abwärme von technischen Geräten zum Rechnen nutzen.

Das zeigen Physiker der Martin-Luther-Universität Halle-Wittenberg (MLU) und der Central South University in China anhand von umfangreichen Berechnungen und Simulationen. Mit dem neuen Ansatz lassen sich Wärmesignale gezielt steuern und für den Einsatz in energieschonender Datenverarbeitung verstärken. Über diese Forschungsergebnisse berichtet das Team im Fachjournal „Advanced Electronic Materials“.

Durch alle technischen Geräte fließt elektrischer Strom. Dabei entsteht Wärme und Energie geht verloren. „Seit Jahrzehnten sucht man nach Methoden, um diese verlorene Energie wieder in Elektronik zu nutzen“, sagt der Physiker Prof. Dr. Jamal Berakdar von der MLU. Das sei eine äußerst anspruchsvolle Herausforderung, da Wärmesignale nur sehr schwer lenkbar und kontrollierbar seien. Beides sind jedoch wichtige Bedingungen, um Daten auf Basis von Wärmesignalen zuverlässig verarbeiten zu können.

Gemeinsam mit zwei Kollegen der chinesischen Central South University führte Berakdar umfangreiche Berechnungen durch. Die Idee: Anstatt herkömmlicher elektronischer Schaltkreise kommen nicht leitende magnetische Streifen in Verbindung mit einem normalen Metallabstandshalter zum Einsatz. „Diese ungewöhnliche Kombination ermöglicht es, Wärmesignale kontrolliert zu führen und zu verstärken, um so logische Rechenoperationen und Wärmedioden zu betreiben“, so Berakdar.

Ein Nachteil der neuen Methode ist allerdings ihre Geschwindigkeit. „Mit diesem Verfahren erreichen wir keine Rechengeschwindigkeit, wie wir sie in modernen Smartphones haben“, so Berakdar. Deshalb sei die neue Methode vermutlich weniger für den Einsatz für Alltagselektronik relevant, sondern vielmehr für die eine neue Generation von Rechenmaschinen, mit denen energiesparende Berechnungen durchgeführt werden sollen. „Unsere Technologie kann einen Beitrag zur Energieeffizienz in der Informationstechnologie leisten, indem sie Überschusswärme sinnvoll nutzt“, fasst Berakdar zusammen.

Die Studie wurde von der Deutschen Forschungsgemeinschaft (DFG), der National Natural Science Foundation of China, der Natural Science Foundation of Hunan Province und im Rahmen des Central South University Innovation-Driven Research Programme gefördert.

Originalpublikation:

Studie: Wang X., Guo G., Berakdar J. PT-Symmetry Enabled Spintronic Thermal Diodes and Logic Gates. Advanced Electronic Materials (2023). doi: 10.1002/aelm.202300325
https://onlinelibrary.wiley.com/doi/10.1002/aelm.202300325

https://pressemitteilungen.pr.uni-halle.de/index.php?modus=pmanzeige&pm_id=5665

Media Contact

Tom Leonhardt Stabsstelle Zentrale Kommunikation
Martin-Luther-Universität Halle-Wittenberg

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Mögliches Zielprotein für die Behandlung von neurodegenerativen Erkrankungen entdeckt

Forschende der Universität Zürich haben ein innovatives Zellkulturmodell für Nervenzellen entwickelt, das komplexe Mechanismen der Neurodegeneration aufschlüsselt. Damit konnten sie ein fehlreguliertes Protein als vielversprechenden therapeutischen Ansatzpunkt für die Behandlung…

Möglicher Auslöser für Autoimmunerkrankungen entdeckt

Immunsystem: B-Zellen zeigen T-Zellen, welche Ziele nicht attackiert werden dürfen. Immunzellen müssen erst lernen, nicht den Körper selbst anzugreifen. Ein Team um Forschende der Technischen Universität München (TUM) und der…

Entwicklung der ersten Wasserstoff-Straßenbahn Europas

Professur Alternative Fahrzeugantriebe erarbeitet Betankungsstrategie, entwickelt Simulationsmodelle zur Alterung des Antriebstranges und vermisst das Brennstoffzellensystem vor dessen Integration in die Straßenbahn. Die Professur Alternative Fahrzeugantriebe der Technischen Universität Chemnitz (TUC)…

Partner & Förderer