Routenplaner für den Mars

Die Valles Marineris ziehen sich über 4.000 Kilometer über den Mars. Das Deutsche Zentrum für Luft- und Raumfahrt will die Gegend mit Drohnen, Rovern und Landrovern erkunden. (Foto: NASA)

Wenn es denn jemals tatsächlich Spuren von Leben auf dem Mars gegeben hat, wären die Valles Marineris ein geeigneter Ort dafür. Die „Mariner-Täler“, wie sie auf Deutsch nach ihrem Entdecker, der Mariner 9 -Sonde der Nasa, benannt wurden, sind rund 4.000 Kilometer lang, bis zu 600 Kilometer breit und stellenweise sieben Kilometer tief. Ihre Gestalt legt an einigen Stellen außerdem den Schluss nahe, dass dort einst Wasser geflossen sein könnte.

Kein Wunder also, dass eine Suche nach Spuren von Leben auf dem Mars in dem Canyon-System stattfinden soll. Das Raumfahrtmanagement des Deutschen Zentrums für Luft- und Raumfahrt DLR sucht derzeit nach Möglichkeiten, die Valles Marineris auf dem Mars mit einem Schwarm von Drohnen, Rovern und Laufrobotern zu erkunden.

An dem Projekt beteiligt sind auch Wissenschaftler der Universität Würzburg. Professor Sergio Montenegro, Inhaber des Lehrstuhls für Informationstechnik für Luft- und Raumfahrt, und seine Mitarbeiter sollen den Erkundungs-Fahr- und -Drohnen den richtigen Weg weisen. Aufgabe der Informatiker ist es, ein lokales Ortungs- und Landesystem zu entwickeln.

Drohnen weisen Robotern den Weg

Der Ansatz des DLR sieht vor, dass eine Armada von Robotern die Marstäler erkundet. Dabei müssen diese jederzeit genauestens wissen, wo sie und ihre Kollegen sich befinden. „Wenn beispielsweise eine fliegende Drohne aus der Luft eine interessante Struktur entdeckt hat, bei der es sich lohnen könnte, eine Bodenprobe zu entnehmen, muss sie dem entsprechenden Roboter den exakten Ort mitteilen können“, erklärt Sergio Montenegro. Und wenn sich die Akkus der Drohne leeren, sollte sie tunlichst den Weg zurück zum sogenannten Lander kennen, damit sie dort wieder Energie auftanken kann.

In Zeiten, da jeder Mensch dank seines Smartphones sofort ermitteln kann, wo er sich befindet, klingt diese Aufgabe nicht sonderlich schwierig. Für den Mars gilt das allerdings nicht. „Auf der Erde liefern uns GPS-Satelliten die notwendigen Informationen“, erklärt der Raumfahrtinformatiker. Deren Entwicklung habe mehrere Jahrzehnte gedauert und mehrere Milliarden Euro gekostet. Auf dem Mars stehen solche Informationen nicht zur Verfügung.

Deshalb soll der Lander bei seinem Anflug auf die Valles Marineris viele sogenannte Funkbojen abwerfen, die sich über die Oberfläche verteilen. Diese ermitteln anschließend per Funksignal ihre jeweilige Position bezogen auf den Standort des Landers, kommunizieren untereinander und liefern dann den Erkundungsrobotern – ähnlich wie GPS-Satelliten auf der Erde – die für die Navigation und Ortung nötigen Daten. Die entsprechende Software liefern die Würzburger Informatiker.

Geringste Abweichungen führen zu großen Fehlern

„Wir demonstrieren, dass die Technik funktioniert“: So beschreibt Sergio Montenegro die Aufgabe der Wissenschaftler in den kommenden drei Jahren. Das Hauptproblem dabei: Damit eine Funkboje weiß, wie weit sie vom Lander entfernt ist, muss sie mit höchster Präzision messen, wie lange ein Funksignal zwischen den beiden Punkten unterwegs ist. Dabei kommt es auf Nanosekunden an – schließlich würde ein Messfehler von einer tausendstel Sekunde bereits eine Abweichung von 300 Kilometern bedeuten. Unterschiedlich hohe Standorte im Canyon, Gesteinsstrukturen, die den Funksignalen den Weg versperren, Reflexionen an den Talwänden verkomplizieren die Messung zusätzlich und müssen von den Informatikern berücksichtigt werden.

Wie Sergio Montenegro und sein Team die Herausforderung angehen wird, steht schon fest. „Wir lassen zunächst zwei Objekte in Ruhe ihren Abstand messen“, sagt der Wissenschaftler. Mit der erforderlichen Präzision werde das schon „schwer genug“ sein. Wenn dieser Schritt klappt, wird das Team die Zahl der Objekte erhöhen; am Ende sollen diese sich dann auch bewegen. Gut möglich, dass in ein paar Jahren deshalb mehrere Quadrocopter durch einen fränkischen Steinbruch fliegen und dort eine Landung auf dem Mars simulieren.

Nebenprodukt: Einsatz unter Wasser

Ob die Würzburger Software tatsächlich einmal auf dem Mars zum Einsatz kommen wird, steht aktuell allerdings in den Sternen. Noch handelt es sich um einen Ansatz der DLR, der – wenn er verwirklicht werden sollte – hunderte von Millionen Euro kosten würde. Sollte die Politik das Geld nicht genehmigen, war die Arbeit der Informatiker trotzdem nicht umsonst. „Wir können das System genauso gut für die Unterwasserforschung einsetzen“, erklärt Montenegro. Auch dort existiert das Problem mit der Positionsbestimmung ohne die Hilfe von GPS-Satelliten. Der wesentliche Unterschied: Anstelle von Funk- kommen unter Wasser Audiosignale zum Einsatz.

Kontakt

Prof. Dr. Sergio Montenegro, Lehrstuhl für Informatik VIII (Informationstechnik für Luft- und Raumfahrt), T: (0931) 31-83715, sergio.montenegro@uni-wuerzburg.de

http://www8.informatik.uni-wuerzburg.de/mitarbeiter/montenegro/ Zur Website von Prof. Dr. Sergio Montenegro

Ansprechpartner für Medien

Robert Emmerich Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Informationstechnologie

Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.

Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Optisch aktive Defekte verbessern Kohlenstoffnanoröhrchen

Heidelberger Wissenschaftlern gelingt Defekt-Kontrolle durch neuen Reaktionsweg. Mit bewusst erzeugten strukturellen „Fehlstellen“ oder Defekten lassen sich die Eigenschaften von kohlenstoffbasierten Nanomaterialien verändern und verbessern. Dabei stellt es jedoch eine besondere…

Spritzguss von Glas

Freiburger Forschenden gelingt schnelle, kostengünstige und umweltfreundliche Materialfertigung. Von Hightech-Produkten im Bereich Optik, Telekommunikation, Chemie und Medizin bis hin zu alltäglichen Gegenständen wie Flaschen und Fenstern – Glas ist allgegenwärtig….

Radikalischer Angriff auf lebende Zellen

Durch Mikrofluidik gezielt die Oberfläche von Zellen mit freien Radikalen stimulieren. Lassen sich kleine, abgegrenzte Bereiche auf der Zellmembran chemisch manipulieren? Mit einer raffinierten mikrofluidischen Sonde haben Wissenschaftler:innen Zellen gezielt…

Partner & Förderer