Epileptische Anfälle verhindern

Foto (Universität Paderborn): Symbolbild

Armbänder für zuverlässige Echtzeitprognosen.

Epilepsie ist eine neurologische Erkrankung, von der weltweit mehr als 50 Millionen Menschen betroffen sind. Zu den Hauptsymptomen gehören schwere Anfälle, die häufig mit Bewusstlosigkeit und Verletzungen einhergehen – in einigen Fällen sogar mit tödlichem Ausgang. Zwar gibt es Notfallmedikamente und Sicherheitsvorkehrungen, deren Anwendung wird durch die Unvorhersehbarkeit der Anfälle jedoch massiv erschwert. Wissenschaftler der Universität Paderborn arbeiten deshalb an einem neuartigen System für ein am Handgelenk getragenes Gerät, ein sogenanntes Wearable, das Prognosen in Echtzeit abgibt. Dafür wurden sie nun mit dem Forschungspreis der Universität ausgezeichnet.

Aktuelle Methoden bringen Nachteile mit sich

„Die Ungewissheit, wann es zum nächsten Anfall kommt, gehört zu den herausforderndsten Aspekten der Krankheit, über die Menschen mit Epilepsie und deren Betreuer*innen berichten“, erklärt Prof. Dr. Dr. Claus Reinsberger, Neurologe und Leiter des sportmedizinischen Instituts an der Universität Paderborn. Ein wirksames Vorhersagesystem in Echtzeit könnte Leben retten, indem Behandlungsstrategien verbessert und Anfälle in Zukunft sogar verhindert werden. Zwar gibt es bereits wissenschaftliche Arbeiten zu verschiedenen Methoden, allerdings gehen diese in der Regel mit deutlichen Beeinträchtigungen einher: „Aktuelle Systeme basieren zumeist auf der invasiven Elektroenzephalographie (EEG), bei der kleine Geräte in die Gehirne der Patient*innen implantiert werden. Laut aktuellen Studien leiden viele Betroffene unter starken Nebenwirkungen. Das macht die EEG für eine breite Anwendung in der Allgemeinbevölkerung, insbesondere bei Kindern, eher ungeeignet“, so Reinsberger.

Bessere Lebensqualität von Millionen Menschen durch neuen Ansatz

Kostengünstige, einfach zu bedienende und tragbare Geräte, die verschiedene Daten des autonomen Nervensystems (ANS) wie z. B. Herzfrequenz, Schweißaktivität und Hauttemperatur gleichzeitig erfassen, sind vielversprechend und könnten die Lebensqualität von Millionen Menschen verbessern. „Die Anfallsvorhersage mithilfe von Wearables ist ein aufstrebendes Gebiet, für das es erst kürzlich wissenschaftliche Bestätigungen der Umsetzbarkeit gab. Diese Techniken sind aber auf die Offline-Verarbeitung beschränkt. Es gibt also derzeit keine Lösung, die Anfälle in Echtzeit vorhersagen kann und damit das Potenzial hat, eine angemessene medizinische Behandlung einzuleiten“, sagt Dr. Tanuj Hasija vom Institut für Elektrotechnik und Informationstechnik, der das Vorhaben zusammen mit Reinsberger umsetzt.

Das wollen die Paderborner Wissenschaftler ändern. Um ihr Ziel zu erreichen, entwickeln sie einen Algorithmus und einen Plattform-Prototyp. Dabei werden Live-Daten vom Wearable erfasst, durch den Algorithmus verarbeitet und münden im Falle einer erhöhten Anfallswahrscheinlichkeit in einen Alarm. Das Boston Children’s Hospital an der Harvard Medical School unterstützt das Projekt.

Einsatz von multimodalem Lernen mit erklärbarer künstlicher Intelligenz

Eine große Hürde besteht darin, Biomarker zu finden, die zwischen der sogenannten interiktalen und der präiktalen Periode (nicht kurz bzw. kurz vor einem Anfall) unterscheiden. „Derzeitige Verfahren zur Offline-Anfallsprognose stützen sich entweder auf präiktale Biomarker aus einer einzigen Funktion des autonomen Nervensystems oder verwenden vollständig datengesteuerte Ansätze, also quasi hochkomplexe Blackboxen ohne interpretierbare Erklärungen“, so Hasija. Die Vorarbeiten der Wissenschaftler haben jedoch gezeigt, dass präiktale Veränderungen an gleich mehrere ANS-Funktionen gekoppelt sind. Die kombinierten Werte könnten also einen zuverlässigen Biomarker für die Anfallsprognose hervorbringen.

Um die Funktionsweise des Algorithmus für die Endanwender*innen und ihre Behandler*innen verständlich zu machen, verwenden die Paderborner Forscher erklärbare künstliche Intelligenz. Der Vorhersagealgorithmus soll gemeinsam aus unterschiedlichen medizinischen Modalitäten lernen und außerdem Erklärungen für seine Vorhersagen liefern. Er entscheidet zum Beispiel über eine hohe Anfallswahrscheinlichkeit aufgrund einer ungewöhnlichen Herzfrequenz in Kombination mit einer hohen Schweißaktivität, die nicht mit Faktoren wie körperlicher Aktivität o. Ä. zusammenhängt.

Herausforderungen gibt es im Zusammenhang mit der Vielfalt der ANS-Signale bei unterschiedlichen Anfallstypen und Personen. „Trotzdem würde eine erfolgreiche Echtzeit-Anfallsvorhersage selbst für einen Bruchteil der Patient*innen zu einem Paradigmenwechsel in der Epilepsiebehandlung führen. Darüber hinaus ist die Kombination aus automatisiertem Lernen auf Basis verschiedener Datenquellen und erklärbarer künstlicher Intelligenz ein einzigartiger Ansatz, der das Potenzial für eine vertrauenswürdige Technik und ein besseres Verständnis der anfallsbedingten Veränderungen bietet“, sind sich die beiden Wissenschaftler einig. Ihre Ergebnisse wollen sie öffentlich zugänglich zu machen, um u. a. künftige Studien zu unterstützen.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Dr. Claus Reinsberger, Department Sport und Gesundheit der Universität Paderborn, Fon: 05251/60-3180, E-Mail: reinsberger@sportmed.upb.de
Dr. Tanuj Hasija, Institut für Elektrotechnik und Informationstechnik der Universität Paderborn, Fon: 05251/60-3181, E-Mail: tanuj.hasija@sst.upb.de

https://www.uni-paderborn.de/nachricht/127266

Media Contact

Nina Reckendorf Stabsstelle Presse, Kommunikation und Marketing
Universität Paderborn

Alle Nachrichten aus der Kategorie: Informationstechnologie

Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.

Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Intelligentes und flexibel einsetzbares Ultraschall-Sensorsystem nach dem Baukastenprinzip

Fraunhofer ZSI: Projekt »SonoOne«. Im Rahmen des Fraunhofer-Zentrums für Sensor-Intelligenz ZSI wurde das intelligente und flexibel einsetzbare Ultraschallsensorsystem »SonoOne« nach dem Baukastenprinzip entwickelt. »SonoOne« kann perspektivisch den sich rasant entwickelnden…

Zuschauen, wie ein Material entsteht

Mit einer Liveschaltung ins Reaktionsgefäß beobachten LMU-Forschende chemische Reaktionen bei der Arbeit. Ihre Ergebnisse helfen dabei, die nächste Generation von Energiematerialien herzustellen. Wer einen Film im Labor drehen will, braucht…

Robotics Institute Germany

Fraunhofer IOSB treibt das Thema Großraumrobotik voran. * Das Fraunhofer IOSB wird im nun vorgestellten Robotics Institute Germany (RIG) den Bereich KI-basierte Großraumrobotik etablieren – dazu zählen autonome Baumaschinen, Landwirtschaftsroboter…

Partner & Förderer