Forscher der Uni Graz zeigen: Das Risiko kleinräumiger Extremniederschläge wird stark unterschätzt

Das Untersuchungsgebiet in Südostösterreich schließt über 150 Stationen des WegenerNet Feldbachregion (grüne Punkte) sowie das umliegende Messnetz von ZAMG und Hydrografischem Dienst (AHYD) ein. Grafik aus Schröer et al. GRL 2018

Kurzzeitige kleinräumige Extremniederschläge ziehen häufig Überflutungen, Vermurungen oder Hangrutschungen nach sich. Um das Risiko realistisch einschätzen zu können, braucht es verlässliche Informationen über die zu erwartenden Regenmengen.

Und genau dafür orten ForscherInnen des Wegener Center klares Verbesserungspotenzial. Denn von den üblichen Wetterdienst-Messnetzen, deren Stationen rund zehn Kilometer oder mehr voneinander entfernt sind, werden diese Niederschläge nur mangelhaft erfasst.

„Das hat zur Folge, dass auch Modelle und Prognosen die über kleinen Gebieten zu erwartenden Regenmengen oft stark unterschätzen“, erklärt Kirchengast. Den AutorInnen der aktuellen Studie gelang es erstmals, den Grad der Unterschätzung in Abhängigkeit von der Stationsnetzdichte zu berechnen, um diese Resultate in Zukunft bei der Risikobewertung und Extremwettermodellierung nutzen zu können.

Für die bahnbrechende Analyse stützten sich die KlimaforscherInnen primär auf die Aufzeichnungen des WegenerNet, das mit seiner weltweit einzigartigen, langjährig angelegten Messdichte die neuen Ergebnisse ermöglicht hat.

Rund 150 Stationen in der südoststeirischen Region Feldbach sind jeweils nur ein bis zwei Kilometer voneinander entfernt und zeichnen seit 2007 im Fünf-Minuten-Takt Daten zu Temperatur, Niederschlag und weiteren wichtigen Klimagrößen auf.

Die Stationen der Zentralanstalt für Meteorologie und Geodynamik (ZAMG) sowie des Österreichischen Hydrografischen Dienstes lieferten wertvolle ergänzende Daten für das südostösterreichische Untersuchungsgebiet der Arbeit.

„In unserer Studie haben wir die räumliche Dichte der Messungen sukzessive ausgedünnt – von einem Kilometer bis auf 30 Kilometer Stationsabstand. Dabei haben wir entdeckt, dass der maximale Flächenniederschlag bei einer Ausdünnung von einem auf fünf Kilometer bereits um die Hälfte unterschätzt wird, bei zehn Kilometern sogar um zwei Drittel“, berichtet Katharina Schröer, Erstautorin der Publikation und Mitglied des Doktoratskollegs Klimawandel der Universität Graz.

Diese Gesetzmäßigkeit gilt im Speziellen für die landschaftlichen und klimatischen Bedingungen des Alpenvorlandes sowie ähnlicher Gebiete der Erde, wo an heißen Sommertagen die typischen hoch aufquellenden Gewitterwolken entstehen. Da wärmere Luft auch mehr Wasserdampf halten kann, führt das insgesamt zu intensiveren Niederschlägen.

Wie die ForscherInnen kürzlich für Südostösterreich herausfanden und in der Fachzeitschrift Climate Dynamics berichteten, nimmt die Intensität der kurzzeitigen Extremniederschläge mit jedem Grad Anstieg der Tagesmitteltemperatur um etwa neun bis 14 Prozent zu.

„Nun ist beispielsweise in der Südoststeiermark seit den frühen 1970er-Jahren die durchschnittliche Sommertemperatur von rund 18 auf 21 Grad Celsius gestiegen und damit auch die Tagesmitteltemperatur. Wir erwarten also, dass sich mit dem Klimawandel auch das Risiko durch intensive Gewitterniederschläge erheblich erhöht“, ergänzt Schröer.

Die neu errechneten Abhängigkeiten der Regenintensität von der Messdichte und der Temperatur lassen nun zuverlässiger bestimmen, welche Starkregenmengen tatsächlich in kurzer Zeit in räumlich eng begrenzten Gebieten niedergehen können.

„Diese Informationen sind zum einen für hydrologische Modelle zur Vorhersage von Sturzfluten und Überschwemmungen von Bedeutung und ermöglichen, Schutzmaßnahmen, wie etwa Bachverbauungen, angemessener zu dimensionieren.

Zum anderen erlauben sie eine realistischere Gefahren- und Schadensabschätzung. Und gleichzeitig können wir in der Forschung durch die neuen Erkenntnisse Wetter- und Klimamodelle verbessern, für zuverlässigere Prognosen und Szenarien kleinräumiger Wetterextreme“, unterstreicht Kirchengast die hohe Relevanz der Erkenntnisse.

Die Arbeit ist in das FWF-Doktoratskolleg „Klimawandel – Unsicherheiten, Schwellenwerte und Strategien“ der Universität Graz eingebettet und trägt zum interdisziplinären Forschungsfokus „Hydrologische Extreme unter Klimawandel verstehen und bewältigen“ des Wegener Center bei.

Das WegenerNet wird primär vom Wissenschaftsministerium und der Universität Graz finanziert und vom Land Steiermark gefördert. Auch die Stadt Graz und weitere kleinere Sponsoren tragen unterstützende Mittel bei.

Univ.-Prof. Dr. Gottfried Kirchengast
Wegener Center für Klima und Globalen Wandel der Universität Graz
Tel.: +43 (0)316/380-8431
E-Mail: gottfried.kirchengast@uni-graz.at
Web: http://wegcenter.uni-graz.at

Schroeer, Katharina, Gottfried Kirchengast, and Sungmin O (2018)
Strong dependence of extreme convective precipitation intensities on gauge network density
Geophysical Research Letters, 45, earlyonline, https://doi.org/10.1029/2018GL077994

Schroeer, Katharina, and Gottfried Kirchengast (2018)
Sensitivity of extreme precipitation to temperature: the variability of scaling factors from a regional to local perspective
Climate Dynamics, 50, 3981-3994, https://doi.org/10.1007/s00382-017-3857-9

Media Contact

Mag. Gudrun Pichler Karl-Franzens-Universität Graz

Alle Nachrichten aus der Kategorie: Geowissenschaften

Die Geowissenschaften befassen sich grundlegend mit der Erde und spielen eine tragende Rolle für die Energieversorgung wie die allg. Rohstoffversorgung.

Zu den Geowissenschaften gesellen sich Fächer wie Geologie, Geographie, Geoinformatik, Paläontologie, Mineralogie, Petrographie, Kristallographie, Geophysik, Geodäsie, Glaziologie, Kartographie, Photogrammetrie, Meteorologie und Seismologie, Frühwarnsysteme, Erdbebenforschung und Polarforschung.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Effizienzschub für die Geothermie

Forschende an der Hochschule München entwickeln ein Antriebssystem für Pumpen, die selbst unter extremen Bedienungen in mehr als tausend Metern Tiefe effizient und zuverlässig arbeiten können – ein wichtiger Baustein…

Nanophysik: Der richtige Dreh

Gestapelte Schichten aus ultradünnen Halbleitermaterialien erzeugen Phänomene, die sich für neuartige Anwendungen nutzen lassen. Ein Team um LMU-Physiker Alexander Högele zeigt, welche Auswirkungen leichtes Verdrehen zweier Lagen haben kann. Neuartige,…

Warum Nickelate supraleitend sind

Ursache gefunden: Supraleiter übertragen elektrischen Strom verlustfrei über jede Entfernung und spielen eine wichtige Rolle bei Quantencomputern und medizinischer Bildgebung. Ein vielversprechendes Material sind Nickelate, Oxidverbindungen auf Nickel- und Neodymbasis….

Partner & Förderer