Entwicklungsgeschichte der Erde

Neue Rückschlüsse auf die ganz frühe Entwicklungsgeschichte der Erde erlauben die Ergebnisse eines Forschungsprojektes der münsterschen Wissenschaftlerin Dr. Astrid Holzheid. Gemeinsam mit Geowissenschaftlern aus Köln, Bayreuth, Australien und Kanada gelang ihr der Nachweis, dass eine bislang nicht zu erklärende Überanreicherung sogenannter metall-liebender Elemente, wie beispielsweise Edelmetalle, im Erdmantel nur durch Meteoriten zu erklären ist, die nach der Bildung des Erdkerns auf die Erde eingeschlagen und im Erdmantel stecken geblieben sind.

Wie die am Institut für Mineralogie der Universität Münster tätige Wissenschaftlerin und ihre Kooperationspartner in der jüngsten Ausgabe des internationalen Wissenschaftsmagazins „Nature“ berichten, ist ein Zuwachs von nur 0,7 Prozent der heutigen Gesamtmasse der Erde vollkommen ausreichend, um die heutigen Gehalte der metall-liebenden Elemente im Erdmantel zu erklären. „Das entspricht einem Bombardement der Erde mit zirka 1000 Tonnen außerirdischen Materials pro Jahr“, erklärt Holzheid.

Während die Gliederung der Erde in einen metallischen Erdkern und einen silikatischen Erdmantel allgemein akzeptiert ist, ist die Entstehung und relative zeitliche Abfolge der Abtrennung und Ausbildung des Erdkerns aus der ursprünglich mehr oder weniger homogenen „Proto-Erde“ nach wie vor sehr umstritten. Mehr Klarheit hat jetzt die soeben veröffentlichte Studie unter der Federführung von Astrid Holzheid gebracht.

Um der Bildung des Erdkerns näher auf die Spur zu kommen, haben sich Holzheid und ihre Fachkollegen das unterschiedliche Verhalten von chemischen Elementen zu Nutze gemacht. Metall- liebende Elemente tendieren dazu, sich in metallischen Eisen- Nickel-Schmelzen zu konzentrieren. Solche Schmelzen sind der chemischen Zusammensetzung des Erdkerns sehr ähnlich und dienten den Wissenschaftlern daher als Labormodell. Bei der Bildung des Erdkerns gelangten diese Elemente zusammen mit dem Eisen-Nickel-Metall aus dem Erdmantel in den Metallkern. Nur noch geringe Mengen der metall-liebenden Elemente verblieben im Erdmantel.

In dem Forschungsprojekt der münsterschen Mineralogin wurden die Konzentrationen dieser Elemente in dem heutigen Erdmantel mit den Konzentrationen in dem Erdmantel nachempfundenen Silikatschmelzen verglichen. Diese Schmelzen wurden in Experimenten in einem speziellen Hochdrucklabor in Bayreuth Temperaturen und Druckverhältnissen ausgesetzt, die dem tiefen Erdinneren nachempfunden wurden. Da die untersuchten Proben zum Teil weniger als einen Quadratmillimeter klein waren, war die Untersuchung nur mit ganz speziellen Analysetechniken in Australien und Kanada möglich.

Herausgefunden wurde bei dieser Analyse, dass die Gehalte der beiden untersuchten Elemente Palladium und Platin in den Silikatschmelzen auffällig niedriger sind als im heutigen Erdmantel. Einzige Erklärung für die heutige „Überanreicherung“ ist für Holzheid „eine späte Zugabe von Material, das die Elemente in relativ hohen Konzentrationen enthält“. Und dafür wiederum kommen ihrer Überzeugung nach nur Meteoriten in Frage. Da die Erde im Laufe der Zeit abkühlte, konnte das extraterrestrische Material im Erdmantel nicht mehr heiß genug werden, um auch nur teilweise zu schmelzen. Die metall- liebenden Elemente konnten daher nicht mehr mittels einer Schmelze aus dem Erdmantel entzogen und in den Erdkern aufgenommen werden.

Weitere Informationen finden Sie im WWW:

Media Contact

Norbert Frie

Alle Nachrichten aus der Kategorie: Geowissenschaften

Die Geowissenschaften befassen sich grundlegend mit der Erde und spielen eine tragende Rolle für die Energieversorgung wie die allg. Rohstoffversorgung.

Zu den Geowissenschaften gesellen sich Fächer wie Geologie, Geographie, Geoinformatik, Paläontologie, Mineralogie, Petrographie, Kristallographie, Geophysik, Geodäsie, Glaziologie, Kartographie, Photogrammetrie, Meteorologie und Seismologie, Frühwarnsysteme, Erdbebenforschung und Polarforschung.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Theoretische Physik: Modellierung zeigt, welche Quantensysteme sich für Quantensimulationen eignen

Eine gemeinsame Forschungsgruppe um Prof. Jens Eisert von der Freien Universität Berlin und des Helmholtz-Zentrum Berlin (HZB) hat einen Weg aufgezeigt, um die quantenphysikalischen Eigenschaften komplexer Festkörpersysteme zu simulieren. Und…

Rotation eines Moleküls als „innere Uhr“

Mit einer neuen Methode haben Physiker des Heidelberger Max-Planck-Instituts für Kernphysik die ultraschnelle Fragmentation von Wasserstoffmolekülen in intensiven Laserfeldern detailliert untersucht. Dabei nutzten sie die durch einen Laserpuls angestoßene Rotation…

Auf dem Weg zur fischfreundlichen Wasserkraft

In dem europaweiten Projekt „FIThydro“ unter Leitung der Technischen Universität München (TUM) haben Forscherinnen und Forscher in Zusammenarbeit mit Industriepartnern bestehende Wasserkraftwerke untersucht. Diese Ergebnisse nutzten sie, um neue Methoden…