Wie sich Ladungen in Solarzellen bewegen

A complex dance: In a perovskite solar cell, electrons, holes and ions move and influence each other.

© MPI-P

Wenn die Sonne aufgeht, beginnt ein komplexer Tanz in Perowskit-Solarzellen – einem Typ von Solarzellen, der in Zukunft bestehende Silizium-Solarzellen ergänzen oder ersetzen könnte: Elektronen werden durch Licht mit Energie versorgt und bewegen sich. Wo sich Elektronen bewegen, hinterlassen sie Löcher. Gleichzeitig bewegen sich Ionen im Perowskit-Material.

Das Verständnis dieses komplexen Tanzes kann dazu beitragen, den Wirkungsgrad von Solarzellen zu erhöhen. Gert-Jan Wetzelaer, Gruppenleiter am Max-Planck-Institut für Polymerforschung (MPI-P) in Mainz, und sein Team haben mit einer Kombination aus Experiment und Computersimulation neue Einblicke in die mikroskopischen Vorgängen erhalten.

Wenn Licht auf eine Solarzelle fällt, wird seine Energie auf Elektronen übertragen, die wiederum ein Gerät mit Strom versorgen können – so die einfache Erklärung von Solarzellen. Aber mikroskopisch gesehen laufen viele verschiedene Prozesse ab: Wenn das Elektron bewegt wird, hinterlässt es ein Loch – das wie eine positive Ladung wirkt und sich in entgegengesetzter Richtung durch das Solarzellenmaterial – einen Halbleiter – bewegt. Gleichzeitig enthalten neuartige Solarzellen auf der Basis von Perowskit-Materialien zusätzlich geladene Atome, so genannte Ionen, die sich ebenfalls in der Solarzelle bewegen und mit Elektronen und Löchern wechselwirken.

In diesem komplexen Wechselspiel ist es wünschenswert, Elektronen oder Löcher so schnell wie möglich zu den Kontakten der Solarzelle zu transportieren – denn je länger sie im Material verbleiben, desto größer ist die Wahrscheinlichkeit, dass sie ihre Energie auf anderem Wege verlieren und wieder in das Material zurückgeben. Um diese Zeit zu optimieren, ist es wichtig, die so genannte „Mobilität“ – also die Geschwindigkeit – von Elektronen und Löchern genau zu kennen. Diese war jedoch in einer Solarzelle wegen des komplexen Wechselspiels zwischen Elektronen, Löchern und sich langsam bewegenden Ionen nur schwer zugänglich.

Gert-Jan Wetzelaer und sein Team haben zunächst die Geschwindigkeit und die Menge der im Perowskitmaterial vorhandenen zusätzlichen Ionen gemessen. Mit diesen Informationen waren sie in der Lage, Computersimulationen durchzuführen, mit denen die Elektronen- und Lochbeweglichkeiten aus Messungen des elektrischen Stroms gewonnen werden konnte. So haben sie herausgefunden, dass sich insbesondere die Löcher langsamer bewegen als ursprünglich angenommen.

„Diese Ergebnisse sind sehr wichtig, um in Zukunft den Wirkungsgrad von Solarzellen optimieren zu können“, sagt Wetzelaer. „Denn wenn wir die genauen Vorgänge, die die Beweglichkeit von Elektronen und Löchern einschränken, genauer verstehen, können wir nach Möglichkeiten suchen, sie zu umgehen“.

Ihre Ergebnisse haben die Wissenschaftler jetzt in der renommierten Zeitschrift „Nature Communications“ veröffentlicht.

Wissenschaftliche Ansprechpartner:

Dr. Gert-Jan Wetzelaer
Tel.: 06131 – 379 558
Email: wetzelaer@mpip-mainz.mpg.de

Originalpublikation:

Sajedi Alvar, M., Blom, P.W.M. & Wetzelaer, G.A.H. Space-charge-limited electron and hole currents in hybrid organic-inorganic perovskites. Nat Commun 11, 4023 (2020). https://doi.org/10.1038/s41467-020-17868-0

Weitere Informationen:

https://www.mpip-mainz.mpg.de/de/blom/gruppen/wetzelaer – Webseite von Gert-Jan Wetzelaer
https://www.mpip-mainz.mpg.de/de/blom – Webseite des Arbeitskreises von Paul Blom

https://www.mpip-mainz.mpg.de/de/presse/pm-2020-11

Media Contact

Dr. Christian Schneider Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Erfolg für Magdeburger Wissenschaftler*innen mit einem „Brutkasten“ für die Lunge

Forschungspreis der Deutschen Gesellschaft für Thoraxchirurgie 2020 geht an Chirurg*innen der Universitätsmedizin Magdeburg Die Arbeitsgruppe „Experimentelle Thoraxchirurgie“ der Universitätsmedizin Magdeburg unter der Leitung von Dr. Cornelia Wiese-Rischke wurde für die…

Mehr als Muskelschwund

Forschungsnetzwerk SMABEYOND untersucht Auswirkungen der Spinalen Muskelatrophie auf Organe Spinale Muskelatrophie (SMA) ist eine erblich bedingte neurodegenerative Erkrankung. Dabei gehen die motorischen Nervenzellen im Rückenmark und im Hirnstamm allmählich zugrunde,…

Molekulare Bremse für das Wurzelwachstum

Die dynamische Änderung des Wurzelwachstums von Pflanzen ist wichtig für ihre Anpassung an Bodenbedingungen. Nährstoffe oder Feuchtigkeit können je nach Standort in höheren oder tieferen Bodenschichten vorkommen. Daher ist je…