Neues Radarverfahren ermöglicht neue Anwendungen und bessere Analysen

Im Gegensatz zu den bekannten Radarverfahren besteht keine gemeinsame Zeit- bzw. Frequenzbasis zwischen Sender und Empfänger. Der Empfänger (7) ist vom Sender (3) komplett entkoppelt.
Abb. Universität Stuttgart

Ein neues Radarverfahren verarbeitet die Reflexionen eines Referenzobjekts, ohne das Sendesignal einzubeziehen. Dadurch wird eine Bestimmung der relativen Abstände zwischen einzelnen Reflexionsobjekten möglich. Vorteile gegenüber konventionellem Radar sind z.B. die einfachere Architektur des Radarsensors, da er nur noch aus einem oder mehreren nichtlinearen Empfängern und einem davon unabhängigen Sender besteht.

Die TLB GmbH unterstützt die Universität Stuttgart bei der Patentierung und Vermarktung der Innovation. TLB ist mit der wirtschaftlichen Umsetzung dieser Technologie beauftragt und bietet Unternehmen Möglichkeiten der Zusammenarbeit und Lizenzierung der Schutzrechte.

Mit Radar werden üblicherweise unterschiedlichste Objekte erkannt, analysiert oder verglichen. Die bekannten Radarverfahren arbeiten dabei mit dem Vergleich von empfangenen Echosignalen mit den ausgesendeten Signalen in einer Empfangseinheit.

Am Institut für Robuste Leistungshalbleitersysteme (ILH)der Universität Stuttgart wurde nun ein neues Radarverfahren entwickelt, das die Reflexionen eines Referenzobjekts verarbeitet, ohne das Sendesignal einzubeziehen. Prof. Ingmar Kallfass und sein Team entwickelten ein Verfahren, das eine Bestimmung der relativen Abstände zwischen einzelnen Reflexionsobjekten möglich macht. Vorteile gegenüber konventionellem Radar sind z.B. die einfachere Architektur des Radarsensors, da er nur noch aus einem oder mehreren nichtlinearen Empfängern und einem davon unabhängigen Sender besteht.

Ein großer Vorteil des neuen Verfahrens ist vor allem die räumliche und elektrische Unabhängigkeit von Sender und Empfänger. Das macht dieses Verfahren besonders für Bereiche wie medizinische Anwendungen sowie Sicherheitstechnik, Produktionstechnik und Materialanalyse interessant.

Im Gegensatz zu den bekannten Radarverfahren besteht keine gemeinsame Zeit- bzw. Frequenzbasis zwischen Sender und Empfänger (s. Fig. 1). Der Empfänger (7) ist vom Sender (3) komplett entkoppelt. Die Bestimmung von Abständen oder Materialeigenschaften zwischen zwei oder mehreren Reflexionsobjekten (2a und 2b) geschieht ohne Einbeziehung des Sendesignals (5). Im vorliegenden Verfahren werden die zwei oder mehrere Empfangssignale (9a, 9b) miteinander durch Mischung in einem nichtlinearen Empfänger (7) verglichen.

Das Produkt der Mischung liefert eine Information zu Abstand oder Materialeigenschaft, wenn eine Divergenz der Modulation zwischen dem ersten und dem zweiten Empfangssignal besteht. Diese Divergenz kann aus einem Frequenzunterschied, Phasenunterschied oder auch Amplitudenunterschied bestehen, abhängig von der gewählten Modulationsform des Sendesignals (5).

Im konventionellen Radar besteht diese Divergenz allerdings zwischen dem Sendesignal (Referenzsignal) (5) und den einzelnen Empfangssignalen (10), während in dem neuen Verfahren die Divergenz zwischen zwei oder mehreren Empfangssignalen (9a, 9b) ohne Einbeziehung des Sendesignals (5) besteht.

Durch die höhere Empfindlichkeit des Radarempfängers kann der Linearitätsbereich des Mischers über einen rauscharmen Vorverstärker gezielt ausgenutzt werden, so dass neben dem ersten, dominanten Reflexionssignal von einem Referenzobjekt auch schwache Signale von dahinterliegenden Schichten detektiert werden können.
Dadurch eignet sich das neue Verfahren für zahlreiche Anwendungsmöglichkeiten.

Es kann beispielsweise bei Personenscannern die Reflexion zwischen der Hautoberfläche und darüber befindlicher, semi-transparenter Gegenstände wie verdeckt getragene Waffen aus Plastik oder Keramik ausnutzen. Durch die Besonderheiten des Verfahrens kann die Detektion auch bei einem sich bewegenden Objekt stattfinden.

Auch im Bereich der medizinischen Anwendungen könnte das Verfahren in Fällen angewendet werden, in denen momentan noch keine berührungslose Detektion mit Radar oder Ultraschall möglich ist (Brustkrebsdetektion, Lebenszeichendetektion).

In der Produktionstechnik bietet das neue Verfahren Vorteile bei der Detektion von Produktionsfehlern wie Delaminierungen oder Ausgangskontrolle von Verpackungen. Auch Füllstandmessung oder Kolbenstandbestimmungen wären möglich, ebenso wie Untersuchungen im Bereich der Materialanalyse.

Die Erfindung wurde zum Patent angemeldet (DE , EP, US anhängig). Die Technologie-Lizenz-Büro (TLB) GmbH unterstützt die Universität Stuttgart bei der Patentierung und Vermarktung der Innovation. TLB ist mit der wirtschaftlichen Umsetzung dieser zukunftsweisenden Technologie beauftragt und bietet Unternehmen Möglichkeiten der Zusammenarbeit und Lizenzierung der Schutzrechte.

Für weitere Informationen: Innovationsmanager Emmerich Somlo (somlo@tlb.de)

http://www.tlb.de

Media Contact

Annette Siller Presse- und Öffentlichkeitsarbeit
Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer