MRT-ähnliche Methode zur direkten Abbildung magnetischer Wellen

Ein Diamantchip mit einer Schicht Nitrogen-Vacancy-Zentren, die 20nm unter seiner Oberfläche implantiert wurden, wird auf einen ultradünnen magnetischen Film gelegt. Die NV-Zentren entdecken die Magnetfelder der angeregten Spinwellen.
SCIXEL / TU Delft

Ein Forscherteam der Technischen Universität Delft, der Universität Leiden (beide in den Niederlanden), der Tohoku-Universität in Japan und des Max-Planck-Instituts für Struktur und Dynamik der Materie in Hamburg hat einen neuen Typ von MRT-Scanner entwickelt, der Spin-Wellen in ultradünnen Magneten abbilden kann. Im Gegensatz zu elektrischen Strömen erzeugen diese so genannten Wellen wenig Wärme, was sie zu vielversprechenden Signalträgern für zukünftige grüne ICT-Anwendungen macht. Die Arbeit des Teams ist nun in Science Advances erschienen.

MRT-Scanner können auf nicht-invasive Weise in den menschlichen Körper blicken. Der Scanner erkennt die Magnetfelder, die von den Atomen im Inneren abgestrahlt werden. So kann der Gesundheitszustand von Organen selbst unter dicken Gewebeschichten untersucht werden.

Viele Forschungsbereiche würden von solch einer nicht-invasiven Abbildungsmethode profitieren. Besonders nützlich wäre sie in der Nanotechnologie und der Chipindustrie. Könnten Entwickler Signale in Computerchips und anderen Nanogeräten ‚sehen‘, wäre es einfacher, deren Leistung zu optimieren und ihre Wärmeproduktion zu reduzieren. Die Millimeterauflösung der konventionellen MRT reicht jedoch nicht aus, um Geräte im Chip-Maßstab zu untersuchen. Nun hat ein internationales Forschungsteam unter Leitung der TU Delft eine neue Methode zur Erfassung magnetischer Wellen im Submikrometerbereich entwickelt.

Das MRT-System der Delfter Forscher macht sich einen speziellen Gitterdefekt in der Kristallstruktur von Diamanten zunutze. Dieser Defekt – bekannt als Stickstoff-Vakanz-Zentrum (NV-Zentrum) – besteht aus einem Stickstoffatom, das neben einer leeren Stelle im Kohlenstoffgitter des Diamanten sitzt.

„Ein solches NV-Zentrum ist im Wesentlichen ein atomgroßer Magnet, der extrem empfindlich auf Magnetfelder reagiert“, erklärt der Forscher Toeno Van der Sar von der TU Delft. „Als solche ermöglichen NV-Zentren eine hochaufgelöste Abbildung der magnetischen Struktur einer Probe.“

Spinwellen sind für das Verhalten von Magneten von zentraler Bedeutung. Sie bieten ein großes Potenzial als Informationsträger, da sie wenig Wärme erzeugen. Ihre Wellennatur ermöglicht es, logische Vorrichtungen zu bauen, die mit Hilfe von Welleninterferenz Rechenaufgaben ausführen. Die Fähigkeit, die Wellen zu sehen, ist jedoch entscheidend für den Entwurf von Spinwellen-Geräten.

„Um diese Wellen abzubilden, verwendeten wir einen Diamantchip, in dem wir eine Schicht von NV-Zentren erzeugten“, erklärt Van der Sar. „Wir legten diesen Chip auf einen dünnen Magnetfilm, in dem wir mit Hilfe von Elektroden und Mikrowellenströmen Spinwellen anregten. Die NV-Zentren nehmen die von den Spinwellen erzeugten Magnetfelder auf, was eine hochauflösende Abbildung der Spinwellen ermöglicht.“

Das Theorieteam des MPSD und der Tohoku-Universität erläuterte die experimentellen Beobachtungen in Bezug auf die chirale Spinwellenanregung und die Dipolfeldkopplung an die Sensorspins. Co-Autor Tao Yu – ein Postdoktorand am MPSD – sagt: „So wie man Wasserwellen auf einem See verfolgt, können die Wissenschaftler jetzt direkt beobachten, wie sich die Spinwellen bewegen. Diese Ergebnisse sind der direkteste Beweis für die Chiralität von Spinwellen, die unser Verständnis der Dynamik von Spinwellen vertiefen“.

“Chiralität ist eine Funktionalität, die bisher in der Spintronik noch wenig eingesetzt wurde, die aber die Grundlage für eine neue Generation spinbasierter Geräte aus konventionellen Materialien sein könnte“, fügt Gerrit Bauer von der Tohoku-Universität hinzu. „Es ist das erste Experiment, das die Chiralität der Spinwellen nachweisen kann. Diese Ergebnisse ebnen den Weg für die Untersuchung von Spinwellen in atomar dünnen Magneten, selbst wenn diese zwischen undurchsichtigen Materialien eingebettet sind“.

Die Forscher haben gezeigt, dass Spinwellen mit ihrer Methode selbst durch undurchsichtige Materialien wie die Metallverdrahtung auf einem Chip abgebildet werden können. Die Technik ist sogar empfindlich genug, um Spinwellen in Magneten nachzuweisen, die nur ein einziges Atom dick sind.

Nach Van der Sar’s Ansicht wird dieser Ansatz einen wichtigen Beitrag zur Entwicklung von neuartigen Technologien leisten: „Da ultradünne Magnete zur Herstellung von Logikbausteinen in kleinstem Maßstab herangezogen werden, kann unsere bildgebende Technik diese Entwicklung unterstützen“.

Text von Toeno van der Sar, TU Delft / Jenny Witt, MPSD


Wissenschaftliche Ansprechpartner:

Toeno Van der Sar, corresponding author: t.vandersar@tudelft.nl

Originalpublikation:

https://advances.sciencemag.org/content/6/46/eabd3556

Weitere Informationen:

https://www.mpsd.mpg.de/481170/2020-11-mri-yu?c=2724

Media Contact

Jenny Witt Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Durch maschinelles Lernen Stoffklassen erkennen

Bioinformatiker der Friedrich-Schiller-Universität Jena haben gemeinsam mit Kollegen aus Finnland und den USA eine weltweit einmalige Methode entwickelt, bei der alle Metaboliten in einer Probe berücksichtigt werden können und sich…

Fingerkuppen-Sensor mit Feingefühl

Wissenschaftlerinnen und Wissenschaftler der Technischen Universität München (TUM) und der Universität Tokyo haben einen ultradünnen Mess-Sensor entwickelt, der wie eine zweite Haut auf der Fingerkuppe getragen werden kann. Dadurch bleibt…

Harzer Stausee drohen italienische Wassertemperaturen

Die Rappbodetalsperre im Harz ist die größte Trinkwassertalsperre in Deutschland und beliefert rund 1 Mio. Menschen mit Trinkwasser. Der Klimawandel könnte nun dafür sorgen, dass die Wassertemperaturen in dem Stausee…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close