Halbleiter luftdicht verpackt: Neue Verkapselungstechnik schützt elektronische Eigenschaften empfindlicher Materialien

„Uns ist es gelungen, verkapselte Transistoren basierend auf Indiumselenid und Galliumselenid herzustellen“, berichtet Dr. Artur Erbe, Leiter der Arbeitsgruppe „Transport in Nanostrukturen“ am HZDR-Institut für Ionenstrahlphysik und Materialforschung.

„Die Verkapselungstechnik schützt die empfindlichen Schichten vor äußeren Einwirkungen und bewahrt ihre Leistungsfähigkeit.“ Für die Einkapselung nutzen die Wissenschaftler hexagonales Bornitrid (hBN). Es ist für diesen Zweck optimal geeignet, weil es sich zu einer dünnen Schicht formen lässt und inert ist, also nicht mit der Umgebung reagiert.

Indium- und Galliumselenid gelten als aussichtsreiche Kandidaten für Anwendungen, zum Beispiel in der Hochfrequenzelektronik, der Optoelektronik oder in der Sensorik.

Aus den Materialien lassen sich flockenähnliche Schichten mit einer Dicke von nur 5 bis 10 Atomlagen bilden, die zur Herstellung von elektronischen Bauelementen mit äußerst kleinen Abmessungen verwendet werden können. Die elektrische Leitung in diesen Schichten erfolgt nur in der Ebene.

Bei der Verkapselung werden die zweidimensionalen Flocken zwischen zwei Plättchen aus hexagonalem Bornitrid angeordnet und so vollständig eingeschlossen. Die obere hBN-Schicht sorgt für die Isolation nach außen, die untere dient als Abstandshalter zum Trägermaterial.

Ursprünglich hatte die Technik die Gruppe um James Hone an der Columbia University in New York entwickelt, an der Himani Arora sie während eines Forschungsaufenthaltes erlernte. Anschließend bearbeitete die Doktorandin der International Helmholtz Research School (IHRS) NanoNet das Thema am HZDR weiter.

Kontaktierung ohne Lithographie
Eine besondere Herausforderung bei der Verkapselungstechnik liegt darin, die Halbleiter zu kontaktieren, also die Kontakte nach außen herzustellen.

Das gängige Verfahren des Aufdampfens unter Verwendung einer Fotomaske eignet sich dafür nicht, weil die empfindlichen Materialien bei dem Prozess sowohl mit Chemikalien als auch mit Luft in Berührung kommen und degradieren würden. Die Forscher am HZDR verwenden deshalb eine lithographiefreie Technik der Kontaktierung.

Dabei handelt es sich um Metallelektroden aus Palladium und Gold, die in das hexagonale Bornitrid eingebettet sind. So lassen sich gleichzeitig eine Verkapselung und eine elektrische Verbindung mit der darunterliegenden zweidimensionalen Schicht erreichen.

„Zur Herstellung der Kontakte wird das gewünschte Elektrodenmuster in die hBN-Schicht geätzt, um die so entstandenen Löcher durch Elektronenstrahlverdampfung mit Palladium und Gold zu füllen“, erläutert Himani Arora. „Dann laminieren wir das hexagonale Bornitrid mit den Elektroden auf die 2D-Flocke.“

Mit mehreren Kontakten in einem hBN-Plättchen lassen sich mehrere Schaltkreise auf einer einzigen Halbleiter-Flocke kontaktieren und messen. In der späteren Anwendung werden die Bauelemente in Schichten übereinander gestapelt.

Wie die Experimente gezeigt haben, schützt die vollständige Einkapselung mit hexagonalem Bornitrid die zweidimensionalen Schichten vor Zersetzung und Degradierung und verleiht ihnen für lange Zeit eine hohe Qualität und Stabilität.

Die am HZDR entwickelte Verkapselungstechnik ist robust und leicht auf andere komplexe zweidimensionale Materialien übertragbar. Das eröffnet neue Wege für grundlegende Studien sowie für die Integration dieser Materialien in technologische Anwendungen.

Die neuen zweidimensionalen Halbleiter lassen sich kostengünstig herstellen und für unterschiedliche Anwendungen nutzen, etwa in Detektoren, die die Wellenlängen von Licht messen. Auch wären sie als Koppler zwischen Licht und Strom einzusetzen, indem sie zum Beispiel Licht generieren oder Transistoren mit Licht schalten.

Publikation:
H. Arora, Y. Jung, T. Venanzi, K. Watanabe, T. Taniguchi, R. Hübner, H. Schneider, M. Helm, J. C. Hone, A. Erbe: Effective hexagonal boron nitride passivation of few-layered InSe and GaSe to enhance their electronic and optical properties, in ACS Applied Materials & Interfaces, 2019 (DOI: 10.1021/acsami.9b13442)

Weitere Informationen:
PD Dr. Artur Erbe | Himani Arora
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel.: +49 351 260-2366
E-Mail: a.erbe@hzdr.de | h.arora@hzdr.de

Medienkontakt:
Simon Schmitt | Wissenschaftsredakteur
Tel.: +49 351 260-3400 | E-Mail: s.schmitt@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
Bautzner Landstr. 400, 01328 Dresden | www.hzdr.de

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Das HZDR entwickelt und betreibt große Infrastrukturen, die auch von externen Messgästen genutzt werden: Ionenstrahlzentrum, Hochfeld-Magnetlabor Dresden und ELBE-Zentrum für Hochleistungs-Strahlenquellen.
Es ist Mitglied der Helmholtz-Gemeinschaft, hat fünf Standorte (Dresden, Freiberg, Grenoble, Leipzig, Schenefeld bei Hamburg) und beschäftigt knapp 1.200 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 170 Doktoranden.

PD Dr. Artur Erbe | Himani Arora
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel.: +49 351 260-2366
E-Mail: a.erbe@hzdr.de | h.arora@hzdr.de

H. Arora, Y. Jung, T. Venanzi, K. Watanabe, T. Taniguchi, R. Hübner, H. Schneider, M. Helm, J. C. Hone, A. Erbe: Effective hexagonal boron nitride passivation of few-layered InSe and GaSe to enhance their electronic and optical properties, in ACS Applied Materials & Interfaces, 2019 (DOI: 10.1021/acsami.9b13442)

Media Contact

Simon Schmitt Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Plankton verschiebt sich zu den Polen

Aufgrund der Erwärmung der Ozeane als Folge des menschlichen Treibhausgas-Ausstosses werden viele Arten des Meeresplanktons neue Lebensräume erschliessen (müssen). ETH-Forschende erwarten, dass viele Organismen zu den Polen wandern und dort…

»Life Cycle Assessment« in der additiven Fertigung

Laser Powder Bed Fusion Goes Green! Kunden und Investoren legen zunehmend Wert auf ökologische und nachhaltig hergestellte Produkte. Eine transparente ökologische Bewertung Ihrer Produkte hilft der Industrie und KMU (Kleine…

Ultraschneller Magnetismus: Schnappschuss der Gitterschwingungen

Magnetische Festkörper können mit einem Laserpuls entmagnetisiert werden. Nach diesem Prinzip funktionieren HAMR-Speicher, die bereits auf dem Markt sind. Die mikroskopischen Mechanismen der ultraschnellen Entmagnetisierung sind allerdings noch nicht vollständig…

Partner & Förderer