Zellulose mit Blindenschrift für Zellen

Eine Beschichtung aus mikrostrukturierter Zellulose - wie der dargestellten Schicht mit Linienraster - könnte Implantate verträglicher machen. Illustration: Ben John Newton

Das menschliche Immunsystem unterscheidet Körpereigenes von Körperfremdem. Was zur Abwehr von Krankheitserregern sehr nützlich ist, wird zum Problem, wenn ein Patient ein künstliches Implantat braucht, zum Beispiel einen Herzschrittmacher oder eine Herzpumpe. So reagiert der Körper in manchen Fällen mit einer Entzündung oder gar mit Abstossung des Geräts.

Forschende der ETH Zürich stellen nun eine vielversprechende Methode vor, ein Material, mit dem sich solche Geräte umhüllen liessen, besonders gut verträglich zu machen: Die Methode ermöglicht es, Zellulose mit spezifischen dreidimensionalen Mikrostrukturen herzustellen, welche die Verträglichkeit des Materials stark verbessern.

Forschende hatten bereits früher festgestellt, dass Zellen besser mit strukturierten Oberflächen interagieren und sich an diese heften können als mit glatten. Bisher war es jedoch nicht möglich, solche Oberflächenstrukturen auf einem der vielversprechendsten Materialien für die Medizin anzubringen, nämlich auf von Bakterien produzierter Zellulose.

Bakterielle Zellulose ist in den letzten Jahren in den Fokus des Forschungsinteresses gerückt, da sie haltbar, anpassungsfähig und im Körper gut verträglich ist. So werden zum Beispiel bereits künstliche Blutgefässe oder Knorpelersatz daraus hergestellt und für ihren Einsatz in der Praxis geprüft. Auch für Wundverbände ist das flexible Material interessant.

Einem Forschungsteam um ETH-Professor Dimos Poulikakos und Aldo Ferrari, Gruppenleiter am Labor für Thermodynamik in Neuen Technologien, gelang es nun, bakterielle Cellulose mit spezifischer Oberflächenstruktur herzustellen. Dazu benutzen sie eine Silikonform mit dreidimensionalem, optimiertem Muster (in diesem Fall ein Linienraster) im Mikrometerbereich.

Diese Form lassen sie auf der Oberfläche einer Nährlösung schwimmen, in welcher die zelluloseproduzierenden Bakterien wachsen. Die Bakterien bauen am Übergang zwischen Flüssigkeit und Luft ein dichtes Netz aus Zellulosesträngen auf. In Anwesenheit der Silikonform passten sie sich an diese an und produzierten eine Zelluloseschicht samt dem Negativabdruck des Linienrasters.

Oberflächenstruktur vermittelt Zellen Signale

Das Linienraster brachte die Bakterien ausserdem dazu, die Zellulosestränge vermehrt in der ungefähren Ausrichtung des Rasters herzustellen. «Menschliche Zellen haben grundsätzlich die Fähigkeit, Fasern zu erkennen, zum Beispiel das körpereigene Kollagen, ein Bestandteil des Bindegewebes», erklärt Aldo Ferrari. Die Zellulosestränge und das Rastermuster böten Zellen somit eine Orientierung entlang von vorgegebenen Bahnen, die sie erspüren. «Für Wundpflaster ist das von grossem Vorteil. So könnten Hautzellen eine Wunde besser verschliessen, wenn sie sich entlang solch strukturierter Zellulose bewegen.» Die Struktur bliebe sogar erhalten, wenn man das Material zur Aufbewahrung trockne und kurz vor der Anwendung wieder befeuchte.

Es sei nun möglich, der Zelluloseoberfläche schon bei ihrer Herstellung eine Nachricht für die später darauf wachsenden Zellen mitzugeben, erklärt Poulikakos. «Man kann sich das wie Blindenschrift vorstellen.» So lasse sich die optimale «Nachricht» passend für die spätere Anwendung auf der Oberfläche anbringen.

Weniger Entzündung dank strukturierter Oberfläche

Solche Strukturen helfen auch, Abstossungsreaktionen des Körpers gegen das künstliche Implantat zu reduzieren: In Studien mit Mäusen verglichen die Forschenden glatte mit strukturierter Zellulose und stellten fest, dass Mäuse, denen die strukturierte Zellulose unter der Haut eingesetzt worden war, signifikant weniger Anzeichen einer Entzündung aufwiesen.

Diese vielversprechenden ersten Ergebnisse verfolgen die Wissenschaftler nun weiter, um das Material unter komplexeren Bedingungen zu testen. Zum Beispiel könnten die Forschenden für künstliche Blutgefässe die Zelluloseoberfläche so strukturieren, dass der Blutfluss optimiert wird und solche Gefässe weniger leicht verstopfen.

Zudem haben die Forschenden um Poulikakos und Ferrari das Spin-Off Hylomorph gegründet, um die Methode zur Marktreife zu bringen. «Wir planen, die strukturierte Zellulose im «Zurich Heart»-Projekt am neuen Wyss Center für Translative Medizin einzusetzen», verrät Poulikakos. Ziel dieses Projekts ist es, künstliche Herzpumpen zu entwickeln, die Patienten mit schweren Herzleiden helfen, die Zeit bis zum Erhalt eines Spenderherzens zu überbrücken, oder ein Spenderherz sogar dauerhaft ersetzen könnten.

Zwar gibt es bereits Herzpumpen. Jedoch sind die Möglichkeiten, die sie bieten, bisher eingeschränkt, sie sind nicht sehr langlebig und können Komplikationen hervorrufen. «Unser Ziel ist es, dass künstliche Implantate vom Körper des Patienten vollständig akzeptiert werden», erklärt Ferrari. Im «Zurich Heart»-Projekt werden die Forschenden die Verpackung und die innere Beschichtung für optimierte Herzpumpen beisteuern, durch die es viel weniger Komplikationen geben sollte.

Literaturhinweis:
Bottan S, Robotti F, Jayathissa P, Hegglin A, Bahamonde N, Heredia-Guerrero JA, Bayer IS, Scarpellini A, Merker H, Lindenblatt N, Poulikakos D, Ferrari A: Surface-Structured Bacterial Cellulose with Guided Assembly-Based Biolithography (GAB). ACS Nano, online Publikation 19. Dezember 2014, doi: 10.1021/nn5036125

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2015/01/zellulose-…

Media Contact

Angelika Jacobs ETH Zürich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Der nächste Schritt auf dem Weg zur Batterie der Zukunft

Kompetenzcluster für Festkörperbatterien „FestBatt“ des Bundesministeriums für Bildung und Forschung geht in die zweite Förderphase – Koordination durch Prof. Dr. Jürgen Janek vom Gießener Zentrum für Materialforschung – Rund 23…

TV-Doku: Digitale Manipulatoren

Algorithmen sind oft sehr hilfreich und aus unserem Leben nicht mehr wegzudenken. Doch es gibt auch Missbrauchsfälle, gerade in Richtung unzulässiger Manipulationsmöglichkeiten. Anders als in sonstigen Bereichen der Wirtschaft gibt…

Neurodegenerative Erkrankungen im Röntgenblick

Göttinger Team untersucht Nervengewebe… Zu welchen Veränderungen im zentralen Nervensystem kommt es bei neurodegenerativen Erkrankungen in einer betroffenen Hirnregion? Manche Veränderungen im Gewebe lassen sich unter dem optischen Mikroskop leicht…

Partner & Förderer