Wie Viren die Wirtszelle umprogrammieren

Viren nutzen die zelluläre Maschinerie des Wirtes für ihre eigene Zwecke. Um sich zu vermehren, programmieren sie die Ribosomen ihres Wirtes zur Herstellung viraler Proteine um. Wissenschaftlern der Charité – Universitätsmedizin Berlin ist es mittels der Kryo-Elektronenmikroskopie gelungen, den Mechanismus dieser Übernahme ein Stück weiter aufzuklären. Die Ergebnisse sind in der aktuellen Ausgabe der Fachjournals Molecular Cell* veröffentlicht.

Ribosomen sind die Eiweißfabriken in den Zellen aller Lebewesen. Von ihnen werden Proteine anhand eines vorgegebenen genetischen Codes hergestellt. Für die Produktion der Eiweiße werden zwei verschiedene Typen von Nukleinsäuren benötigt – die sogenannte Messenger-RNA (mRNA), die den Bauplan des Proteins enthält, und die Transfer-RNA (tRNA), die diesen Bauplan Schritt für Schritt in das Protein übersetzt.

Um auf den sehr komplexen Bauplänen den richtigen Startpunkt für die Produktion zu finden, benötigt das Ribosom eine Vielzahl an Hilfsproteinen sowie den Grundstein, die Initiator-tRNA. In einigen Fällen jedoch, wenn die mRNA eine spezielle dreidimensionale Faltung aufweist, als IRES-Struktur (interne ribosomale Eintrittstelle) bekannt, kann die Proteinbiosynthese auch mit weniger Helfern ausgelöst werden. Einige Viren nutzen solche dreidimensionalen IRES-Strukturen, um Wirts-Ribosomen zu entern und die eigenen Eiweiße produzieren zu lassen.

Die Forscher um Prof. Dr. Christian Spahn, Direktor des Instituts für Medizinische Physik und Biophysik am Campus Charité Mitte, haben in ihrer Studie das IRES-Element eines bestimmten Virus – des Cricket-Paralysis-Virus (CrPV) – untersucht. Dieses Virus befällt Insekten und eignet sich besoders gut als Modellbeispiel, da es mithilfe seiner IRES (CrPV IRES) die Bindung der mRNA an das Ribosom direkt und ohne jegliche Helfer sowie ohne Initiator-tRNA vermitteln kann. Dies ist möglich, da die CrPV IRES die Struktur des tRNA-mRNA Komplexes perfekt nachahmt.

Lange Zeit ist man davon ausgegangen, dass nach der Bindung der CrPV IRES an das Ribosom die Eiweißsynthese direkt beginnen kann. Neuere Studien legen jedoch nahe, dass die dafür notwendige tRNA-Bindung durch die CrPV IRES blockiert wird. Die IRES muss erst innerhalb des Ribosoms verschoben werden, um die tRNA-Bindungsstelle zugänglich zu machen. „Unsere Studie liefert den ersten direkten Nachweis dieses verschobenen IRES-Zustandes“, erklärt Margarita Muhs, die sich mit Tarek Hilal die Erstautorenschaft teilt.

*Margarita Muhs, Tarek Hilal, Thorsten Mielke, Maxim A. Skabkin, Karissa Y. Sanbonmatsu, Tatyana V. Pestova, Christian M.T. Spahn. Cryo-EM of Ribosomal 80S Complexes with Termination Factors Reveals the Translocated Cricket Paralysis Virus IRES. Molecular Cell, Feb. 2015. doi: 10.1016/j.molcel.2014.12.016.

Kontakt:
Prof. Dr. Christian Spahn
Direktor des Instituts für Medizinische Physik und Biophysik
Campus Charité Mitte
t: +49 30 450 524 131
christian.spahn@charite.de

http://www.charite.de
http://Institut für Medizinische Physik und Biophysik
http://biophysik.charite.de/

Media Contact

Dr. Julia Biederlack idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Biologischer Abbau von Mikroplastik durch „PlasticWorms“

An der Fakultät Bioingenieurwissenschaften der Hochschule Weihenstphan-Triesdorf (HSWT) wird ein innovatives biologisches Verfahren entwickelt, bei dem Würmer und Mikroorganismen Mikroplastik in Kläranlagen abbauen können. Mikroplastik ist in aller Munde und…

Goldene Kugelmühlen als grüner Katalysator

Ein mit Gold beschichteter Mahlbecher für Kugelmühlen hat sich in der Forschungsarbeit der Anorganischen Chemie der Ruhr-Universität Bochum als wahrer Wundertopf erwiesen: Ganz ohne Lösungsmittel und umweltschädliche Chemikalien konnte das…

Optimal getrackte PV-Anlagen durch Deep Learning

Nachführende Photovoltaik-Anlagen mit Trackern führen zu einem Ertragsgewinn von 20 bis 30 Prozent im Vergleich zu fest montierten PV-Freiflächenanlagen. Zusätzlich könnten sie weitere Kriterien in ihrer Ausrichtung berücksichtigen, beispielweise den…

Partner & Förderer