Wasserlösliche und biologisch abbaubare Stützstrukturen für 3D-Druckverfahren

Darstellung eines Bauteils mit Stützstruktur. IKT, Universität Stuttgart

Der 3D-Druck bietet vielfältige Möglichkeiten, um komplizierte Formen und komplexe Geometrien herzustellen. Additive Fertigungsverfahren sind mittlerweile fester Bestandteil in der industriellen Fertigung und Entwicklung.

Mit diesen Verfahren lassen sich schnell, einfach und kostengünstig Modelle, Muster, Prototypen, Werkzeuge und Endprodukte erzeugen. Für Formen wie Überhänge, Hohlräume oder Hinterschneidungen sind allerdings Stützstrukturen notwendig, wenn diese im 3D-Drucker gedruckt werden sollen.

Diese Stützstrukturen müssen anschließend rückstandslos entfernt werden. Das ist oftmals sehr aufwendig. Außerdem werden oft bestimmte Kunststoffe verwendet, die nur durch Säure, Basen oder Lösungsmittel aufgelöst werden. Das wiederum belastet das Abwasser, denn damit gelangen nicht nur Kunststoffreste ins Abwasser, sondern auch die Chemikalien.

Am Institut für Kunststofftechnik der Universität Stuttgart entwickeln Forscher unter der Leitung von Prof. Bonten derzeit ein neuartiges Stützstrukturmaterial, das sowohl wasserlöslich als auch biologisch abbaubar ist. Das Material besteht aus einem biologisch abbaubaren Kunststoff auf Basis von Polyhydroxybutyrat, der mit einem Salz compoundiert wurde.

Mit diesem compoundierten Kunststoff als Stützmaterial können Strukturen erzeugt werden, die nach dem Druckvorgang einfach mit Wasser ausgewaschen werden. Das Wasser löst hierbei das Salz aus der porösen Struktur, so dass der Werkstoff in winzige Fragmente zerfällt und sich rückstandslos vom Bauteil entfernen lässt. Die im Wasser gelösten Kunststoffteile können anschließend durch Mikroorganismen vollständig biologisch abgebaut werden.

Das könnte ein bestehendes Problem beim 3D-Druck vor allem auch bei Anwendungen im privaten Bereich lösen. Denn problematisch ist bei den derzeitigen Anwendungen vor allem der entstehende Abfall.

Einerseits entsteht problematisches Abwasser dadurch, dass das Stützmaterial chemisch entfernt wird. Da bestimmte Kunststofftypen nur durch Säure, Basen oder Lösungsmittel aufgelöst werden können, muss der Abfall bzw. das Abwasser wieder aufwendig entsorgt werden.

Zudem werden aber auch lösliche Stützstrukturwerkstoffe verwendet, die auch in Wasser vollständig gelöst werden können. Bei Anwendungen im privaten Bereich wird dann aber das entstehende Abwasser mitsamt der darin gelösten Polymere über das Abwasser entsorgt und die Polymerketten gelangen in die Umwelt.

Das Projekt wird von der Fachagentur für Nachwachsende Rohstoffe (FNR) gefördert. Die Erfindung wurde in Deutschland zum Patent angemeldet. Die Technologie-Lizenz-Büro (TLB) GmbH unterstützt die Universität Stuttgart bei der Patentierung und Vermarktung der Innovation.

TLB ist mit der wirtschaftlichen Umsetzung dieser zukunftsweisenden Technologie beauftragt und bietet Unternehmen Möglichkeiten der Zusammenarbeit und Lizenzierung der Schutzrechte.
Für weitere Informationen: Innovationsmanager Dr. Dirk Windisch (windisch@tlb.de)

http://www.tlb.de
http://www.ikt.uni-stuttgart.de/

Media Contact

Annette Siller idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Globale Erwärmung aktiviert inaktive Bakterien im Boden

Neue Erkenntnisse ermöglichen genauere Vorhersage des Kohlenstoffkreislaufs. Wärmere Böden beherbergen eine größere Vielfalt an aktiven Mikroben: Zu diesem Schluss kommen Forscher*innen des Zentrums für Mikrobiologie und Umweltsystemforschung (CeMESS) der Universität…

Neues Klimamodell

Mehr Extremregen durch Wolkenansammlungen in Tropen bei erhöhten Temperaturen. Wolkenformationen zu verstehen ist in unserem sich wandelnden Klima entscheidend, um genaue Vorhersagen über deren Auswirkungen auf Natur und Gesellschaft zu…

Kriebelmücken: Zunahme der Blutsauger in Deutschland erwartet

Forschende der Goethe-Universität und des Senckenberg Biodiversität und Klima Forschungszentrums in Frankfurt haben erstmalig die räumlichen Verbreitungsmuster von Kriebelmücken in Hessen, Nordrhein-Westfalen, Rheinland-Pfalz und Sachsen modelliert. In der im renommierten…

Partner & Förderer